
Extracted from:

Designing Elixir Systems with OTP
Write Highly Scalable, Self-Healing Software with Layers

This PDF file contains pages extracted from Designing Elixir Systems with OTP,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Designing Elixir Systems with OTP
Write Highly Scalable, Self-Healing Software with Layers

James Edward Gray, II
Bruce A. Tate

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Dave Rankin
Development Editor: Jacquelyn Carter
Copy Editor: Jasmine Kwytin
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-661-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—December 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Prefer Call Over Cast to Provide Back Pressure
Intuitively, you might think that it’s best to use the one-way handle_cast to send
messages that don’t need responses. For example, the :add_template message
doesn’t really need a response. We just trust that the template was added
successfully. If it’s not, something has gone horribly wrong. There’s nothing
we can do beyond crashing the server and reporting the reasons for the crash
back to the user.

Interestingly, handle_cast is rarely the best option for sending messages. In this
section, we’ll look at one of the reasons why. They are called serializability
and back pressure. Let’s explore why.

As you probably know, each Elixir process has a message queue. We’ll call it
the mailbox. Unlike a physical mailbox, Elixir processes only receive messages
from it; they don’t send from the mailbox. Like a true mailbox, if the receiving
process for a given message is struggling, the mailbox can overflow, often
leading to severe problems that are hard to debug.

A good example is the Elixir logger. If your production code is sending log
messages quicker than the logger can handle them, either because the sender
is logging too many log requests or because the logger’s disk I/O is somehow
compromised, we don’t want the logger to immediately stop logging messages.

The Elixir logger has an excellent solution for this problem. It’s called selective
back-pressure. That means that when the logger gets into trouble, it will
detect this problem and start slowing the clients down by switching from cast
to call.

Making the logger’s client wait for every request to finish before sending the
next one relieves the pressure on the logger itself by slowing down the flow
of messages. If the logger still can’t keep up, it announces this failure as a
log message and begins to discard messages until the logger gets to a more
manageable threshold.

Let’s dive into some specific details. We’ll start with configuration.

Users can configure options to represent thresholds. These thresholds specify
when a healthy logger becomes sick because its message logger gets too long.
Two of these thresholds specify when to go from cast to call, or when to start
shedding messages.

Users can also configure thresholds defining when the system goes from sick
to healthy. When an unhealthy system has a message queue that shrinks

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jgotp
http://forums.pragprog.com/forums/jgotp

below these thresholds, the logger can stop discarding messages, or go back
to cast from call.

The logger code then uses that configuration to implement three different
modes to implement the cast, call and shedding modes. They are called :async,
:sync, and :discard, respectively.

Now, let’s look at the specific Elixir implementation. As a general metric for
system health, sometimes it helps to look at the number of messages in a
processes mail box. Here’s the code that does that job:

defp message_queue_length() do
{:message_queue_len, messages} = Process.info(self(), :message_queue_len)
messages

end

Process.info(self(), :message_queue_length)does the magic. It returns an integer value
that is the number of messages in the queue. The logger can then make
use of it.

Now we can see how the logger switches modes. In logger/config.ex, the logger
computes the right mode, like this:

case mode do
_ when messages >= discard_threshold -> :discard
:discard when messages > keep_threshold -> :discard
_ when messages >= sync_threshold -> :sync
:sync when messages > async_threshold -> :sync
_ -> :async

end

This snippet computes the mode given the message queue length in messages.
The thresholds in this function all come from the logger configuration. These
thresholds work in pairs. One threshold in each pair marks the transition
from healthy to sick, and one marks the transition from sick to healthy.

We shed messages if the function is greater than discard_threshold; we stay in
discard mode if we stay above the keep_threshold. Otherwise, we switch to sync
mode if we are over the sync_threshold, and stay in that mode if it’s already in
sync mode and the messages are above the async_threshold. If none of those things
are true, we’re healthy, so we send async.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jgotp
http://forums.pragprog.com/forums/jgotp

Now, we can compare the configured mode with the computed one, like this:

def handle_event(_event, {state, thresholds}) do
%{mode: mode} = state

case compute_mode(mode, thresholds) do
^mode ->

{:ok, {state, thresholds}}

If the mode matches the mode that was configured, do nothing. Otherwise:

new_mode ->
if new_mode == :discard do

message =
"Logger has #{message_queue_length()} messages in its queue, " <>

"which is above :discard_threshold. Messages will be discarded " <>
"until the message queue goes back to 75% of the threshold size"

log(:warn, message, state)
end

if mode == :discard do
log(:warn, "Logger has stopped discarding messages", state)

end

If things are very bad and we’re beyond the discard limit, we set the :discard
state so we can shed messages until we’re healthy. We log a message to tell
the user we’re no longer logging, pending improvements.

All that remains is to set the new mode in the logger, like this:

state = persist(%{state | mode: new_mode})
{:ok, {state, thresholds}}

end

We set the new mode and let the logger lose. Let’s see :discard in action.

def __should_log__(level) when level in @levels do
...
if compare_levels(level, min_level) != :lt and mode != :discard do

{level, config, pdict}
else

:error
end
...

end

In a function called __should_log__ we check the mode for :discard. If it’s set,
regardless of log level, we’ll return :error.

• Click HERE to purchase this book now. discuss

Prefer Call Over Cast to Provide Back Pressure • 7

http://pragprog.com/titles/jgotp
http://forums.pragprog.com/forums/jgotp

In logger.ex, the bare log looks like this:

def bare_log(level, chardata_or_fun, metadata \\ []) do
case __should_log__(level) do

:error -> :ok
info -> __do_log__(info, chardata_or_fun, metadata)

end
end

If the mode is :error, we do nothing, shedding the messages. Otherwise we call
do_log, a long function which eventually does this:

notify(mode, {level, Process.group_leader(), tuple})

We’re finally at the magic moment. We choose call or cast to handle back
pressure. At the very bottom of logger.ex, you’ll see these functions:

defp notify(:sync, msg), do: :gen_event.sync_notify(Logger, msg)
defp notify(:async, msg), do: :gen_event.notify(Logger, msg)

This means Elixir will log messages as a call (sync) or cast (async).

Here’s the point. If your code uses handle_call instead of handle_cast, you don’t
need to worry as much because you can only send messages as fast as your
server can process them. It’s a great automatic governor on a server.

Rarely, you’ll want to use cast messages to start multiple workers at once, or
to notify multiple workers simultaneously. Try to be judicious with this
approach, though.

Back pressure is one reason to avoid cast messages. It’s not the only reason,
though. Let’s look at the next one.

Extend Your APIs Safely
So far, we’ve strongly advocated building many small components and man-
aging those components through dependencies. When this strategy is working
well, it simplifies your job by limiting the scope of what you need to understand
to make any given change.

This strategy can go to a special hell fueled by cascading dependencies in a
hurry, if you’re not careful with how you build your APIs. Specifically, main-
taining a healthy ecosystem is difficult if each release of an API breaks com-
patibility to old versions of the API. Breaking changes have several different
forms:

• An API can add requirements to input parameters such as adding a new
required field to our Quiz.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jgotp
http://forums.pragprog.com/forums/jgotp

• An API can change the shape of the output such as changing all of our
quiz functions to {:ok, quiz}.

• An API can change their behavior in unexpected ways such as treating
an amount as dollars rather than cents.

Let’s look quickly at an approach to APIs that will improve compatibility as
you improve the various independent components in your system. We’ll
honor three rules.

Don’t Add New Requirements to Existing APIs, Only Options
Many beginning developers tend to validate all arguments for a remote API.
Then, as those APIs need to be extended, they require those as well. There’s
a problem with that approach.

If servers provide requests that require all parameters, each new parameter
means you’ll have to upgrade the client and server simultaneously. With just
one client and one server component, that strategy may seem viable but as
dependencies like this cascade through a system, upgrades get exponentially
more difficult. Then, you lose all of the advantages you were seeking by
building decoupled components in the first place.

If you want to extend an API, extend it with options. Then, servers can provide
new API functionality to the same endpoints without requiring all clients to
change. Later, clients can upgrade to take advantage of these new options.

Ignore Anything You Don’t Understand
The “no new requirements” rule pertains to public-facing APIs. There’s a
similar rule for dealing with data. Ignoring everything you don’t understand
makes it possible to slowly add new fields, request options that may not yet
be supported, and to upgrade your systems incrementally.

These first two rules work together well. For example, say there’s an export
program that’s expecting a fixed set of fields representing a product. The
server makes new fields optional. The server does two things:

• It ignores optional fields that are empty
• It ignores fields it doesn’t know about

This way, the system will function well through change. It doesn’t matter
which system deploys first. The server exports the new fields only when both
the client and server provide them. This is the ideal behavior.

• Click HERE to purchase this book now. discuss

Extend Your APIs Safely • 9

http://pragprog.com/titles/jgotp
http://forums.pragprog.com/forums/jgotp

Don’t Break Compatibility; Provide a New Endpoint
Here’s the punch line. Don’t break users of an endpoint, ever. Rather than
extending an existing endpoint in incompatible ways, provide a new endpoint
to do the new thing. Modern languages have many ways to scope and delegate
functions, and these features give us infinite flexibility with naming.

We’ll go one step further. Server endpoints are not the only APIs that could
stand to benefit from this approach. Everyday function libraries break these
rules every day. There’s a concept called semantic versioning that says minor
versions are compatible, and major versions are possibly incompatible. These
rules might look wise, but a far better way is to adopt rules that don’t break
compatibility in the first place.

It’s been a busy chapter, and it’s time to wrap up.

Wrap Your Core in a Boundary API
In this chapter, we left our safe bubble of the functional core and ventured
out to the real world to deal with state, processes, and communication between
components. Here’s how we did it.

To begin our exploration, we dove into some techniques to handle composition
with inputs and outputs that were less certain. We looked at ways to transform
executing errors to data. We also encountered composition using with.

Next, we built a server layer in two pieces, the QuizManager and the QuizSession.
We used a GenServer to build a quiz and another to let a user take a quiz. The
server layer used start_link and handle_call functions to encapsulate state and
handle communication between processes. We eschewed handle_cast to handle
back pressure issues.

We built validations to make sure our servers will work on consistent data,
and then we built an API layer to access our server layer in a convenient way.

It’s all starting to come together, but we know our boundary layer supports
only one running quiz at a time. In the next chapter, we’ll build a dynamic
supervisor to allow each user to run a process per quiz. We’ll also build a
quiz manager to let users build and store multiple quizzes.

You’ve reached the crux of the book, so turn the page and let’s get busy!

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jgotp
http://forums.pragprog.com/forums/jgotp

