
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Equality Is Contextual
No problem, we can just adjust the fast pass implementation to target the
time rather than the ID.

defimpl FunPark.Eq, for: FunPark.FastPass do
alias FunPark.Eq
alias FunPark.FastPass
def eq?(%FastPass{time: v1}, %FastPass{time: v2}), do: Eq.eq?(v1, v2)

def not_eq?(%FastPass{time: v1}, %FastPass{time: v2}),
do: Eq.not_eq?(v1, v2)

end

But wait, we don’t want to replace the default Eq for FastPass. Instead, we need
an alternative Eq that considers two fast passes equal if they occur at the
same time.

Transform Inputs Before Matching
If you’ve worked with lists, you’re likely familiar with map, an implementation
of a functor, which applies a function to transform something while preserving
its structure—for a list, this means transforming each item. Functional pro-
gramming also includes the contravariant functor, which transforms the input
before it is processed. This is useful for abstractions like Eq and Ord, where
we often want to transform a value before it enters the comparison—such as
extracting a specific field or normalizing the input to ignore differences like
case or formatting.

We’ll cover functors in more detail: Transform with a Functor, on page ?

Unlike some other functional languages, Elixir doesn’t have a built-in contramap
function, so we need to implement it ourselves.

defmodule FunPark.Eq.Utils do
alias FunPark.Eq

def contramap(f) do
%{
eq?: fn a, b -> Eq.eq?(f.(a), f.(b)) end,
not_eq?: fn a, b -> Eq.not_eq?(f.(a), f.(b)) end

}
end

end

The contramap/1 function is a higher-order transformer: it takes an existing
comparator and adapts it to work on a different type by applying a function
before comparing values.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jkelixir
http://forums.pragprog.com/forums/jkelixir

In our FastPass module, we define get_time/1 to extract the time value from a fast
pass and implement eq_time/0 using contramap/1, establishing equality based on
time.

lib/fun_park/fast_pass.ex
def get_time(%__MODULE__{time: time}), do: time

def eq_time do
Eq.Utils.contramap(&get_time/1)

end

Now, if we want to compare two FastPass values by time, we can use eq_time.

Run It
Create the rides:

iex> mansion = FunPark.Ride.make("Dark Mansion", min_age: 14, tags: [:dark])
iex> tea_cup = FunPark.Ride.make("Tea Cup")

Generate a fast pass for the Dark Mansion:

iex> datetime = DateTime.new!(~D[2025-06-01], ~T[13:00:00])

iex> fast_pass_a = FunPark.FastPass.make(mansion, datetime)
%FunPark.FastPass{

id: 3618,
ride: %FunPark.Ride{

id: 3490,
name: "Dark Mansion",
...

},
time: ~U[2025-06-01 13:00:00Z]

}

Generate another Fun Pass for the Tea Cup using the same time:

iex> fast_pass_b = FunPark.FastPass.make(tea_cup, datetime)
%FunPark.FastPass{

id: 3650,
ride: %FunPark.Ride{

id: 3522,
name: "Tea Cup",
...

},
time: ~U[2025-06-01 13:00:00Z]

}

Our default equality check knows these are different (they have different ids):

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jkelixir/code/lib%2Ffun_park%2Ffast_pass.ex
http://pragprog.com/titles/jkelixir
http://forums.pragprog.com/forums/jkelixir

iex> FunPark.Eq.eq?(fast_pass_a, fast_pass_b)
false

But our new custom equality knows they have the same time:

iex> FunPark.FastPass.eq_time.eq?.(fast_pass_a, fast_pass_b)
true

You’re Gonna Need a Bigger Boat
Sometimes, our tools aren’t big enough to handle what’s lurking beneath.

Let’s take a closer look at our current contramap/1 function:

def contramap(f) do
%{

eq?: fn a, b -> Eq.eq?(f.(a), f.(b)) end,
not_eq?: fn a, b -> Eq.not_eq?(f.(a), f.(b)) end

}
end

In Elixir, protocols are tied to named modules. Our custom Eq instance, derived
in contramap/1, isn’t associated with any particular module, so we store its
comparison functions in a map.

Because Elixir calls functions differently depending on where they’re
stored—implicitly for modules and explicitly for maps—we can’t treat them
interchangeably. To keep things composable and consistent, our best option
is to normalize everything to maps.

lib/fun_park/eq/utils.ex
def to_eq_map(%{eq?: eq_fun, not_eq?: not_eq_fun} = eq_map)

when is_function(eq_fun, 2) and is_function(not_eq_fun, 2) do
eq_map

end

def to_eq_map(module) when is_atom(module) do
%{

eq?: &module.eq?/2,
not_eq?: &module.not_eq?/2

}
end

The to_eq_map/1 function ensures that we always work with a map representa-
tion of equality checks. If we pass a map that has eq? and not_eq? functions,
it is returned as-is. If we pass in a module, it extracts the corresponding
functions and wraps them in a map, standardizing our interface.

Here is an improved contramap/1 function using this approach:

• Click HERE to purchase this book now. discuss

Transform Inputs Before Matching • 5

http://media.pragprog.com/titles/jkelixir/code/lib%2Ffun_park%2Feq%2Futils.ex
http://pragprog.com/titles/jkelixir
http://forums.pragprog.com/forums/jkelixir

lib/fun_park/eq/utils.ex
def contramap(f, eq \\ Eq) do

eq = to_eq_map(eq)

%{
eq?: fn a, b -> eq.eq?.(f.(a), f.(b)) end,
not_eq?: fn a, b -> eq.not_eq?.(f.(a), f.(b)) end

}
end

Not only have we standardized the representation, but eq \\ Eq preserves the
default while still allowing us to swap in custom equality logic.

This is a bigger—much more composable—boat.

Simplify Equality Checks
Even though we’ve standardized our internal logic around the map-based
representation of Eq, usage still differs depending on whether it’s produced
by the protocol or by contramap/2. From the caller’s perspective, that distinction
is an internal detail. Let’s introduce a single eq?/2 function to fold that differ-
ence into a unified interface.

lib/fun_park/eq/utils.ex
def eq?(a, b, eq \\ Eq) do

eq = to_eq_map(eq)
eq.eq?.(a, b)

end

Now, callers have a single entry point that uses the protocol by default but
still allows custom equality logic to be passed in as an optional parameter.
This keeps comparison logic adaptable without changing the underlying data,
helping the system stay flexible as it evolves.

Run It
Let’s regenerate our passes:

iex> mansion = FunPark.Ride.make("Dark Mansion", min_age: 14, tags: [:dark])
iex> tea_cup = FunPark.Ride.make("Tea Cup")

iex> datetime = DateTime.new!(~D[2025-06-01], ~T[13:00:00])

iex> fast_pass_a = FunPark.FastPass.make(mansion, datetime)
iex> fast_pass_b = FunPark.FastPass.make(tea_cup, datetime)

From the context of FastPass, the passes have different ID’s, so they are different:

iex> FunPark.Eq.Utils.eq?(fast_pass_a, fast_pass_b)
false

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jkelixir/code/lib%2Ffun_park%2Feq%2Futils.ex
http://media.pragprog.com/titles/jkelixir/code/lib%2Ffun_park%2Feq%2Futils.ex
http://pragprog.com/titles/jkelixir
http://forums.pragprog.com/forums/jkelixir

But we can inject our eq_time/0 logic to determine they are scheduled for the
same time:

iex> has_eq_time = FunPark.FastPass.eq_time()
iex> FunPark.Eq.Utils.eq?(fast_pass_a, fast_pass_b, has_eq_time)
true

We’ve structured equality around domain context—using protocols for shared
behavior and contramap to adapt comparisons to specific needs, making the
system easier to use and evolve.

• Click HERE to purchase this book now. discuss

Transform Inputs Before Matching • 7

http://pragprog.com/titles/jkelixir
http://forums.pragprog.com/forums/jkelixir

