e

Advanced Functional
Programming
with Elixir

Model Behavior, Manage Complexity,

92.n0S J1X1)3 JNOA

Joseph Koski

Series editor: Sophie DeBenedetto
Development editor: Adaobi Obi Tulton

This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Introduction

The question I hear most often about functional programming is, “Why
bother?” It feels like overkill. Code reuse is a myth and most abstractions rot
faster than they're shared. Instead of clarity, you get a maze of indirection.
Onboarding suffers. And in the end, the business just wants working
code—they don’t care how you get there.

Fair enough. Functional programming won'’t fix a broken project any more
than switching frameworks will fix a broken team. If your domain is unclear,
your boundaries are a mess, and no one understands how the parts fit
together, adding monads won’t help. At best, you'll just find new ways to
express confusion.

But if you care about the long game, about building systems that are easier
to understand and safer to change, then functional programming helps. Not
because it’s clever but because it demands clarity. The goal is confidence:
confidence that your code behaves, that your logic composes, that your
abstractions scale.

Because once fear sets in, no one wants to touch the core, they just patch
the edges and hope nothing breaks.

I, like many developers, come from a music background. There, mastery was
unmistakable—you could hear it. From the outside, it looked like talent. But
inside, we knew better: it came from hours of focused practice. Not playing
what you already knew, but slogging through the uncomfortable bits just
beyond your reach. As Anders Ericsson explains in Peal [EP16], the mythic

10,000-hour rule is nonsense—it’s not the time, it’s the grind.

But why grind at all? As Daniel Pink shows in Drive [PinO9] we're motivated
by mastery. We want to understand, improve, and take control. Functional
programming helps by sharpening how we think—its mental models are
explicit, and composable. They shift our focus from sequences to transforma-

tions, from behavior to relationships.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jkelixir
http://forums.pragprog.com/forums/jkelixir

Introduction ® iv

Most functional programming books drop you into the deep end—dense syntax,
abstract theory, and jargon with little connection to real code. This one takes
a different path. It doesn’t pretend learning functional programming is easy.
It's not. But mastery depends on knowing where you're going—step by step,
with each concept building on the last. Not by simplifying the ideas, but by
making them learnable: deliberate, cumulative, and within reach.

How This Book Works

You'll start with foundational patterns like equality and ordering and build
toward more powerful structures: monoids, predicates, and eventually monads.
Each chapter adds a concept, connects it to what came before, and pushes
a little further.

The examples are written for clarity, not production. They're minimal and
focused—meant to show the shape of a problem rather than cover every edge
case. Alongside the book, you'll find a production-ready library that imple-
ments these abstractions—fully tested, well documented, and ready to use.!
It’s also a good place to find minimal examples and quick references.

The goal of functional programming is to build systems that stay flexible as
they grow—able to absorb new requirements without buckling. After all, the
only measure of quality that matters is how well your code holds up under
change.

Who This Book Is For

This book is for developers who want to sharpen how they think about code.
You might already be working in Elixir, or you might come from another
language and are curious about functional programming—or even about Elixir
itself. No prior functional programming experience is required—just the abil-
ity to write basic programs in any modern language, along with curiosity,
patience, and a willingness to explore new ideas.

Online Resources

Visit the book’s page on the Pragmatic Bookshelf website to download the
code and access related resources.” If you own the ebook, each code example
also includes a small gray box you can click to download the code snippet.

1. https://jkwa.github.io/funx/readme.html

2. https://pragprog.com/titles/jkelixir

« Click HERE to purchase this book now. discuss

https://jkwa.github.io/funx/readme.html
https://pragprog.com/titles/jkelixir
http://pragprog.com/titles/jkelixir
http://forums.pragprog.com/forums/jkelixir

Conventions Used In This Book ® v

Join the conversation on the book’s DevTalk forum to discuss topics, share
ideas, and report errata that could shape future editions.’

Conventions Used In This Book

This book builds functional programming mental models through the story
of FunPark. We start with general FP patterns, apply them in the FunPark
source code, and see these patterns in action through interactive sessions
(iex). These interactive sessions appear shaded and are woven into the narra-
tive.

The “Joe asks” asides answer the “what about...?” moments, and tip asides
offer pointers to help the reader spot something important, clear up a misun-
derstanding, or make a connection.

With the map in hand, let’s explore what’s around the bend!

3. http://devtalk.com/books/advanced-functional-programming-with-elixir

« Click HERE to purchase this book now. discuss

http://devtalk.com/books/advanced-functional-programming-with-elixir
http://pragprog.com/titles/jkelixir
http://forums.pragprog.com/forums/jkelixir

