
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Any
The Predicate.Any monoid combines predicates in the context of disjunction (∨),
using an identity of () -> false.

lib/fun_park/monoid/pred_any.ex
defmodule FunPark.Monoid.Predicate.Any do

defstruct value: &FunPark.Monoid.Predicate.Any.default_pred?/1

def default_pred?(_), do: false
end

defimpl FunPark.Monoid, for: FunPark.Monoid.Predicate.Any do
alias FunPark.Monoid.Predicate.Any

def empty(_), do: %Any{}

def append(%Any{} = p1, %Any{} = p2) do
%Any{
value: fn value -> p1.value.(value) or p2.value.(value) end

}
end

def wrap(%Any{}, value) when is_function(value, 1) do
%Any{value: value}

end

def unwrap(%Any{value: value}), do: value
end

The best part about monoids is that they’re closed under their
operation—combine two, and you get another of the same kind.
With predicates, every composition returns a predicate.

As in earlier chapters, let’s abstract away the monoids and give callers higher-
level operations instead:

lib/fun_park/predicate.ex
defmodule FunPark.Predicate do

import FunPark.Monoid.Utils, only: [m_append: 3, m_concat: 2]
alias FunPark.Monoid.Predicate.{All, Any}

def p_and(pred1, pred2) when is_function(pred1) and is_function(pred2) do
m_append(%All{}, pred1, pred2)

end

def p_or(pred1, pred2) when is_function(pred1) and is_function(pred2) do
m_append(%Any{}, pred1, pred2)

end

def p_not(pred) when is_function(pred) do
fn value -> not pred.(value) end

end

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jkelixir/code/lib%2Ffun_park%2Fmonoid%2Fpred_any.ex
http://media.pragprog.com/titles/jkelixir/code/lib%2Ffun_park%2Fpredicate.ex
http://pragprog.com/titles/jkelixir
http://forums.pragprog.com/forums/jkelixir

def p_all(p_list) when is_list(p_list) do
m_concat(%All{}, p_list)

end

def p_any(p_list) when is_list(p_list) do
m_concat(%Any{}, p_list)

end

def p_none(p_list) when is_list(p_list) do
p_not(p_any(p_list))

end

end

We prefix these functions with p_, avoiding conflicts with Elixir’s reserved
words like and and or.

Now we can implement suggested?/1 by composing online?/1 with the negation of
long_wait?/1, ensuring a ride is only suggested if it’s available and the wait is
short:

lib/fun_park/ride.ex
def suggested?(%__MODULE__{} = ride),

do: p_all([&online?/1, p_not(&long_wait?/1)]).(ride)

There’s more than meets the eye in this simple function. Monoids can combine
concrete values—like numbers using max or sum. But in this case, we’re com-
bining ideas. A predicate isn’t a boolean—it’s a function that returns a boolean.

The suggested?/1 function is just a wrapper—it takes a ride and
immediately applies it to the predicate. In theory, we should be
able to eliminate the wrapper with eta reduction. However, Elixir
requires anonymous functions to be called explicitly with .() syntax.
Because the outer function is named and the inner one is anony-
mous, we can’t reduce it.

Run It
The Tea Cup ride is not suggested because it has a wait time of 100 minutes:

iex> tea_cup = FunPark.Ride.make("Tea Cup", online: true, wait_time: 100)
%FunPark.Ride{ name: "Tea Cup", wait_time: 100, online: true, ...}

iex> FunPark.Ride.suggested?(tea_cup)
false

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jkelixir/code/lib%2Ffun_park%2Fride.ex
http://pragprog.com/titles/jkelixir
http://forums.pragprog.com/forums/jkelixir

Later, the wait time for the Tea Cup ride shortens to 10 minutes, making it
a suggested ride:

iex> tea_cup = FunPark.Ride.change(tea_cup, %{wait_time: 10})
%FunPark.Ride{ name: "Tea Cup", wait_time: 10, online: true, ... }

iex> FunPark.Ride.suggested?(tea_cup)
true

But our Ride expert is back—we’re suggesting rides to patrons who aren’t eli-
gible! It won’t do for patrons to follow our suggestion only to find out they
can’t take the ride.

So far, we’ve operating within a single bounded context. But with this request,
our expert needs us to span both Ride and Patron.

Predicates That Span Contexts
In Domain-Driven Design [Eva03], when bounded contexts interact, their
relationship is defined via context mapping. In FunPark, the Ride context sets
eligibility rules—such as height and age requirements—while the Patron context
supplies height and age attributes. This forms a conformist relationship, where
Patron conforms to the rules set by Ride but has no influence over them.

Since the Ride defines the rules, the logic for determining eligibility belongs in
the Ride bounded context.

To determine eligibility, a Ride must verify that a Patron meets height and age
requirements.

First, let’s define predicates for height and age requirements in the Ride context:

lib/fun_park/ride.ex
def tall_enough?(%Patron{} = patron, %__MODULE__{min_height: min_height}),

do: Patron.get_height(patron) >= min_height

lib/fun_park/ride.ex
def old_enough?(%Patron{} = patron, %__MODULE__{min_age: min_age}),

do: Patron.get_age(patron) >= min_age

Notice that we’re not destructuring Patron to access age or height. How that data
is stored is an implementation detail. The Ride context shouldn’t rely on it—it
should use Patron’s accessors instead. This keeps the contexts loosely coupled
and allows Patron to evolve without breaking Ride.

Next, we define eligible?/2 by combining the predicates using p_all/1:

def eligible?(%Patron{} = patron, %__MODULE__{} = ride),
do: p_all([&tall_enough?/2, &old_enough?/2]).(patron, ride)

• Click HERE to purchase this book now. discuss

Predicates That Span Contexts • 5

http://media.pragprog.com/titles/jkelixir/code/lib%2Ffun_park%2Fride.ex
http://media.pragprog.com/titles/jkelixir/code/lib%2Ffun_park%2Fride.ex
http://pragprog.com/titles/jkelixir
http://forums.pragprog.com/forums/jkelixir

Run It
Let’s start with a patron and a ride:

iex> roller_mtn = FunPark.Ride.make(
"Roller Mountain", min_height: 120, min_age: 12

)
%FunPark.Ride{ name: "Roller Mountain", min_age: 12, min_height: 120, ... }

iex> alice = FunPark.Patron.make("Alice", 13, 119)
%FunPark.Patron{ name: "Alice", age: 13, height: 119, ...}

Alice meets the age requirement but does not meet the height requirement:

iex> alice |> FunPark.Ride.old_enough?(roller_mtn)
true

iex> alice |> FunPark.Ride.tall_enough?(roller_mtn)
false

This means Alice is not eligible to ride Roller Mountain:

iex> alice |> FunPark.Ride.eligible?(roller_mtn)
false

However, if Alice grows a bit over the summer, she will be eligible:

iex> alice = FunPark.Patron.change(alice, %{height: 121})
%FunPark.Patron{ name: "Alice", age: 13, height: 121 }

iex> alice |> FunPark.Ride.eligible?(roller_mtn)
true

By composing logic across contexts, we’re no longer suggesting rides a patron
can’t take.

We’ve enforced a rule across two contexts—without entangling them.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jkelixir
http://forums.pragprog.com/forums/jkelixir

