
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Create the SceneDelegate class

Like Ruby, Swift files often contain a single class or concept named after the
filename. After the import statements, create a new class with the class keyword
and call it SceneDelegate:

ch01_02/ios/HikingJournal/SceneDelegate.swift
import HotwireNative
import UIKit

class SceneDelegate {➤

}➤

The “delegate” suffix refers to the delegate design pattern in iOS. This provides
a way for objects to act on behalf of others to handle specific events, like when
the app launches or a push notification is received. In Rails, delegates are
similar to ActiveRecord callbacks like before_validation and after_save.

Add the window and navigator properties

Inside the SceneDelegate class, add a property named window. This holds the
actual interface that the user sees:

ch01_03/ios/HikingJournal/SceneDelegate.swift
import HotwireNative
import UIKit

class SceneDelegate {
var window: UIWindow?➤

}

Unlike Ruby, variables in Swift must be explicitly typed. The question mark
at the end of the UIWindow type makes this property optional. Optional properties
behave like Ruby ones - they can also be nil. Non-optional properties in Swift,
referenced by omitting the question mark, must always contain a value and
can never be nil.

window needs to be optional because it is assigned after SceneDelegate is
instantiated. You don’t ever assign anything to the window, iOS takes care
of that when the app launches.

After the window, create a Navigator property. Part of Hotwire Native, this
property abstracts the navigation between web screens and acts as our main
interface to the framework.

ch01_04/ios/HikingJournal/SceneDelegate.swift
import HotwireNative
import UIKit

class SceneDelegate {
var window: UIWindow?

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jmnative/code/ch01_02/ios/HikingJournal/SceneDelegate.swift
http://media.pragprog.com/titles/jmnative/code/ch01_03/ios/HikingJournal/SceneDelegate.swift
http://media.pragprog.com/titles/jmnative/code/ch01_04/ios/HikingJournal/SceneDelegate.swift
http://pragprog.com/titles/jmnative
http://forums.pragprog.com/forums/jmnative

private let navigator = Navigator()➤

}

The navigator is an implementation detail of SceneDelegate. No one else needs
to know about it, so we can make it private. It is also declared with let, making
it a constant. This means that, unlike our window property declared with var
above, the value of navigator can never be changed.

Swift encourages immutability whenever possible. Knowing that a variable
can never change often makes it easier to understand how data will flow
through the code in your app.

Inherit and implement

When the app launches, iOS calls a specific function of a specific class.
SceneDelegate needs to inherit from this class and implement the function for
our app to launch. To make this happen, add a colon after SceneDelegate and
add the UIResponder class and UIWindowSceneDelegate protocol:

ch01_05/ios/HikingJournal/SceneDelegate.swift
import HotwireNative
import UIKit

class SceneDelegate: UIResponder, UIWindowSceneDelegate {➤

var window: UIWindow?

private let navigator = Navigator()
}

Protocols in Swift are most similar to abstract classes in Rails. On their own,
they only contain property and function definitions, no implementation.

After our navigator property, add the function required for the app to launch:

ch01_06/ios/HikingJournal/SceneDelegate.swift
import HotwireNative
import UIKit

class SceneDelegate: UIResponder, UIWindowSceneDelegate {
var window: UIWindow?

private let navigator = Navigator()

func scene(➤

_ scene: UIScene,➤

willConnectTo session: UISceneSession,➤

options connectionOptions: UIScene.ConnectionOptions➤

) {➤
➤

}➤

}

• 2

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jmnative/code/ch01_05/ios/HikingJournal/SceneDelegate.swift
http://media.pragprog.com/titles/jmnative/code/ch01_06/ios/HikingJournal/SceneDelegate.swift
http://pragprog.com/titles/jmnative
http://forums.pragprog.com/forums/jmnative

The function being called is our trigger to start rendering some content.

Functions in Swift

Functions in Swift look pretty different than methods in Ruby. Like properties of a
class, each parameter in Swift must also have a type.

The following function takes two parameters of type Int and returns another Int:

func add(x: Int, y: Int) -> Int {
x + y

}

add(x: 1, y: 2) // Returns 3

We call functions in Swift just like we call Ruby methods, with named parameters.
We can omit a parameter from the call site by using an underscore:

func add(_ x: Int, _ y: Int) -> Int {
x + y

}

add(1, 2) // Returns 3

Or rename a parameter for the implementation:

func add(first x: Int, second y: Int) -> Int {
x + y

}

add(first: 1, second: 2) // Returns 3

Functions are referenced by their call site parameters without types. The three
functions you just saw would be referenced in documentation as add(x:y:), add(_:_:) and
add(first:second:).

Set a root view controller

For iOS to actually render anything, we need to attach a view controller to
the main window. View controllers, subclasses of UIViewController, are the
building blocks of iOS applications. They are kind of like combining a Rails
controller and a Rails view into one, as view controllers manage the state of
the UI and are responsible for rendering it. With a few exceptions, individual
screens and view controllers share a 1:1 relationship.

Grab the rootViewController from Navigator and assign it to the window’s root view
controller property:

ch01_07/ios/HikingJournal/SceneDelegate.swift
import HotwireNative
import UIKit

class SceneDelegate: UIResponder, UIWindowSceneDelegate {
var window: UIWindow?

• Click HERE to purchase this book now. discuss

• 3

http://media.pragprog.com/titles/jmnative/code/ch01_07/ios/HikingJournal/SceneDelegate.swift
http://pragprog.com/titles/jmnative
http://forums.pragprog.com/forums/jmnative

private let navigator = Navigator()

func scene(
_ scene: UIScene,
willConnectTo session: UISceneSession,
options connectionOptions: UIScene.ConnectionOptions

) {
window?.rootViewController = navigator.rootViewController➤

}
}

The question mark after window is similar to the Safe Navigation Operator in
Ruby, &. We can chain calls with the question mark to safely work with
optionals. If the underlying value is nil then nothing happens - just like in
Ruby.

When the app launches, it will now render the navigator’s screen hierarchy.

Initiate the Visit

Next, tell Navigator to visit your homepage. Do this by declaring a constant
outside of the SceneDelegate class to make it accessible across the entire code-
base, and creating a URL pointing to the local server address: http://localhost:3000.
We’ll deal with production URLs in the (as yet) unwritten Chapter 10, Deploy
to Physical Devices with TestFlight and Internal Testing, .

ch01_08/ios/HikingJournal/SceneDelegate.swift
import HotwireNative
import UIKit

let baseURL = URL(string: "http://localhost:3000")!➤

class SceneDelegate: UIResponder, UIWindowSceneDelegate {
var window: UIWindow?

private let navigator = Navigator()

func scene(
_ scene: UIScene,
willConnectTo session: UISceneSession,
options connectionOptions: UIScene.ConnectionOptions

) {
window?.rootViewController = navigator.rootViewController

}
}

There’s something to notice with the baseURL variable: there’s an exclamation
point at the end of the URL initializer. This is because URL(string:) returns an
optional URL. The compiler can’t validate the arbitrary string we pass in at
compile time, so the check happens at runtime. Adding an exclamation point

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jmnative/code/ch01_08/ios/HikingJournal/SceneDelegate.swift
http://pragprog.com/titles/jmnative
http://forums.pragprog.com/forums/jmnative

tells the compiler to force unwrap the optional variable, returning a non-
optional URL class.

Force Unwrapping Optionals

A heads up that force unwrapping a nil value will crash your app!
This should only be done when you are 100% confident there won’t
be a nil value present. We’ll touch on safer operations to access
potentially nil values later in the book.

Last but not least, we need to actually visit the URL. Tell the navigator to render
the homepage of the Rails app by calling route(_:). Append the /hikes path to
baseURL to visit the index page for hikes.

ch01_09/ios/HikingJournal/SceneDelegate.swift
import HotwireNative
import UIKit

let baseURL = URL(string: "http://localhost:3000")!

class SceneDelegate: UIResponder, UIWindowSceneDelegate {
var window: UIWindow?

private let navigator = Navigator()

func scene(
_ scene: UIScene,
willConnectTo session: UISceneSession,
options connectionOptions: UIScene.ConnectionOptions

) {
window?.rootViewController = navigator.rootViewController
navigator.route(baseURL.appending(path: "hikes"))➤

}
}

Click Product → Run or press D R to build and run the app. The homepage
of the Rails app will appear in the simulator.

• Click HERE to purchase this book now. discuss

• 5

http://media.pragprog.com/titles/jmnative/code/ch01_09/ios/HikingJournal/SceneDelegate.swift
http://pragprog.com/titles/jmnative
http://forums.pragprog.com/forums/jmnative

Sign in by opening the hamburger menu at the top of the screen and tapping
“Sign in”. The form is populated with credentials for the demo account so just
tap the submit button to authenticate. Once signed in, add a hike via the
“Add a hike” button at the bottom of the screen.

We didn’t build any of this functionality into the Rails app. We get it all for
free from Hotwire Native. Amazing!

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jmnative
http://forums.pragprog.com/forums/jmnative

