
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com


Route the URL via Path Configuration
Like we learned in Chapter 3, Navigate Gracefully with Path Configuration,
on page ?, our path configuration helps us keep our business logic on the
server. This creates low-maintenance, server-driven apps. In our scenario
here, instead of hard-coding which URL paths to render as maps, we can
apply path properties from our remote JSON file.

Start by adding a new rule to the path configuration on the server, matching
the path for a hike’s map to assign the view_controller property.

ch05_05/rails/app/controllers/configurations_controller.rb
class ConfigurationsController < ApplicationController

def ios_v1
render json: {
settings: {},
rules: [

{
patterns: [
"/new$",
"/edit$"

],
properties: {
context: "modal"

}
},
{➤

patterns: [➤

"/hikes/[0-9]+/map"➤

],➤

properties: {➤

view_controller: "map"➤

}➤

}➤

]
}

end

def android_v1
# ...

end
end

Like context, Hotwire Native is aware of the view_controller property, too. The
framework exposes it when the user taps a new link via the NavigatorDelegate.
A quick refresher from Chapter 1, Build Your First Hotwire Native Apps, on
page ? that delegates are design pattern in iOS. They provide a way for
objects to act on behalf of others to handle specific events, like when a link
is tapped.

• Click  HERE  to purchase this book now.  discuss

http://media.pragprog.com/titles/jmnative/code/ch05_05/rails/app/controllers/configurations_controller.rb
http://pragprog.com/titles/jmnative
http://forums.pragprog.com/forums/jmnative


Our TabBarController is the one creating the Navigators, so that’s a great place
to implement NavigatorDelgate. At the bottom of TabBarController.swift, add another
extension that implements the NavigatorDelegate protocol and implements this
function.

ch05_06/ios/App/Controllers/TabBarController.swift
import HotwireNative
import UIKit

class TabBarController: UITabBarController {
// ...

}

extension TabBarController: UITabBarControllerDelegate {
// ...

}

extension TabBarController: NavigatorDelegate {➤

func handle(proposal: VisitProposal) -> ProposalResult {➤

}➤

}➤

handle(proposal:) is called every time the user taps a link. It gives us an opportu-
nity to customize what type of screen is rendered. To do that, the function
requires us to return a ProposalResult.

D -click on ProposalResult to jump to the definition. (This is a handy way of
navigating around code in Xcode.) Here’s what the contents of ProposalResult.swift
show:

// hotwire-native-ios:Source/Turbo/Navigator/Helpers/ProposalResult.swift

import UIKit

/// Return from `NavigatorDelegate.handle(proposal:)` to route a custom controller.
public enum ProposalResult: Equatable {

/// Route a `VisitableViewController`.
case accept

/// Route a custom `UIViewController` or subclass
case acceptCustom(UIViewController)

/// Do not route. Navigation is not modified.
case reject

}

The ProposalResult class is an enumeration, which means it defines common
types for a group of related values and enables you to work with them in a
type-safe way.

The three cases are used like so:

• .accept - Route a web view for rendering web content.

• 4

• Click  HERE  to purchase this book now.  discuss

http://media.pragprog.com/titles/jmnative/code/ch05_06/ios/App/Controllers/TabBarController.swift
http://pragprog.com/titles/jmnative
http://forums.pragprog.com/forums/jmnative


• .acceptCustom - Route a custom view controller.
• reject - Cancel and ignore the proposal.

We’ll use the .acceptCustom case and pass in our fancy new MapController class
for map routes.

ch05_07/ios/App/Controllers/TabBarController.swift
import HotwireNative
import UIKit

class TabBarController: UITabBarController {
// ...

}

extension TabBarController: UITabBarControllerDelegate {
// ...

}

extension TabBarController: NavigatorDelegate {
func handle(proposal: VisitProposal) -> ProposalResult {

switch proposal.viewController {➤

case "map": .acceptCustom(MapController(url: proposal.url))➤

}➤

}
}

And for everything else, .accept will render the default web view provided by
Hotwire Native.

ch05_08/ios/App/Controllers/TabBarController.swift
import HotwireNative
import UIKit

class TabBarController: UITabBarController {
// ...

}

extension TabBarController: UITabBarControllerDelegate {
// ...

}

extension TabBarController: NavigatorDelegate {
func handle(proposal: VisitProposal) -> ProposalResult {

switch proposal.viewController {
case "map": .acceptCustom(MapController(url: proposal.url))
default: .accept➤

}
}

}

Wrap up the routing by assigning self to the delegate of each Navigator instance
created in makeViewControllers().

• Click  HERE  to purchase this book now.  discuss

Route the URL via Path Configuration • 5

http://media.pragprog.com/titles/jmnative/code/ch05_07/ios/App/Controllers/TabBarController.swift
http://media.pragprog.com/titles/jmnative/code/ch05_08/ios/App/Controllers/TabBarController.swift
http://pragprog.com/titles/jmnative
http://forums.pragprog.com/forums/jmnative


ch05_09/ios/App/Controllers/TabBarController.swift
import HotwireNative
import UIKit

class TabBarController: UITabBarController {
// ...

private func makeViewControllers() -> [UIViewController] {
return Tab.all.map { tab in

let navigator = Navigator(delegate: self)➤

navigators.append(navigator)

let controller = navigator.rootViewController
controller.tabBarItem.title = tab.title
controller.tabBarItem.image = UIImage(systemName: tab.image)
return controller

}
}

}

// ...

Run the app and navigate to a hike page. When you tap the Map button,
you’ll see a native map!

• 6

• Click  HERE  to purchase this book now.  discuss

http://media.pragprog.com/titles/jmnative/code/ch05_09/ios/App/Controllers/TabBarController.swift
http://pragprog.com/titles/jmnative
http://forums.pragprog.com/forums/jmnative


We’ll address the satellite view a bit later. But for now, take a second to learn
how to manipulate the map in the simulator. This will give you a good idea
of how much better the user experience is compared to a web-based map.

Manipulating the Map

In the simulator, you can hold down the E  key to create a second
“finger”, which is useful for zooming in and out on the map. You
can then hold down B  to “stick” them together for two-finger
scrolls.

• Click  HERE  to purchase this book now.  discuss

Route the URL via Path Configuration • 7

http://pragprog.com/titles/jmnative
http://forums.pragprog.com/forums/jmnative

