
Extracted from:

Create Your Successful Agile Project
Collaborate, Measure, Estimate, Deliver

This PDF file contains pages extracted from Create Your Successful Agile Project,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Create Your Successful Agile Project
Collaborate, Measure, Estimate, Deliver

Johanna Rothman

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Development Editor: Katharine Dvorak
Indexing: Potomac Indexing, LLC
Copy Editor: Candace Cunningham
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 Johanna Rothman.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-260-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—October 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

To Mark, as always.

Learn to Estimate with Relative Sizing
If you have a new team or a team new to agile approaches, no one has any
data about what they can do as a team. You may have been in this position
before as a leader in your organization. Your managers may have asked you
to estimate on behalf of the team.

Don’t estimate for the team or even think about committing it to any deliver-
ables in an agile environment. The team is in charge of its own work. The
team manages its work. The team manages its estimation.

However, there is something you can do. You can help the team estimate its
work with relative sizing, even if the team members have never worked
together and have no historical data.

Relative sizing uses two ideas to improve estimates: the team compares story
sizes (points) against what it’s accomplished in the past (the relative part),
and it estimates using the wisdom of the team as a form of Wideband Delphi

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jragm
http://forums.pragprog.com/forums/jragm

estimation. As everyone comments on the story and as people suggest a rela-
tive size, the team gathers better data and can therefore develop a better
estimate.

A Short Explanation of Wideband Delphi Estimation

Wideband Delphi is a team-based estimation approach. Before agile approaches, some
teams used Wideband Delphi to create an entire project estimate. The person(s) who
wrote the requirements explained all the requirements to the team members. The team
disbanded and the members created their estimates for their part of the work.

The team members then met to discuss their estimates and where their understanding
of either the requirement or the complexity occurred. Teams might have met up to
four times to review and re-estimate. (I provided a more detailed explanation and how
to use Wideband Delphi in Manage It! [Rot07].)

To effectively use relative sizing, first ask the product owner to create stories
that are as small as the product owner can create. Make sure these stories
are real user stories so the team can understand who will see the value in
each story.

Ask the team to group the stories by size, from the smallest to the largest.
Keep similar-size stories together. The entire team decides how large the
stories are.

Assess the story sizes. Using the Fibonacci sequence (1, 2, 3, 5, 8, 13, and
so on), assign all the smallest stories to the size 1 bucket. The next-sized
stories are a 2 and the next are a 3. Continue until the team agrees on the
relative sizes of the stories. (See Agile Estimating and Planning [Coh05].)

Once the team agrees on the relative size, take the stories estimated as 2. Do
all the 2 stories look like they’re about the same size? If so, now estimate the
duration for the 2 stories.

If the team thinks all the 2 stories will take about 10 person-hours, you now
know how long the 1 stories will take. Divide the duration for the 2 stories
by 2 to derive the duration for the 1 stories. In this example, our 1 stories
would take five hours. Ask yourself whether that makes sense. If so, you now
have the factor to use to multiply against all the other relative sizings.

If you see you have stories larger than an 8, size up to 13 and then use 20,
or 40 for very large efforts. (The reality is that no one understands the size of
anything past 13, but we can use these numbers in a different way later.)

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jragm
http://forums.pragprog.com/forums/jragm

If you have stories larger than say, 8, the team has plenty of unknowns, or
thinks those stories are highly complex. Consider a spike first to break the
task into smaller pieces. (See Spikes Can Help Everyone Understand the Value,
on page ?, for more information.)

Here are some guidelines that have helped teams in the past:

• If a “1” is larger than a team-day, see if the team either has too-large
stories or the team isn’t a feature team.

• If the team regularly sizes stories as larger than 5, there could be several
problems: the stories are too large; the team doesn’t understand the sto-
ries; there is no defined MVP; or the code is in terrible shape. Ask the
team to discuss and address the root cause of larger stories.

• Ask the entire team to workshop the stories with the product owner and
to see what it takes to get to a size of 1.

When teams create stories of size 1 (where 1 is a team-day or less time), the
team knows several things:

• The team can count the stories for the next estimation period and have
confidence about what it can deliver.

• The team can deliver at least one story every day.

• The team has more confidence in its estimate, which reduces overall
project risk.

Your Small Stories Might Be Larger than Mine

As you’ve seen, I like very small stories. However, you might find that “small” for you
is a little larger than for me.

One product owner I know says, “As long as the team can collaborate on the story
and finish it inside of two days, that’s small enough for me.” Me too. One agile coach
I know says, “We don’t want stories smaller than a 3 because it’s not worth breaking
them down and then people don’t work together on a story.”

I’m still going to talk about one-day stories—for a team, not a person. As long as your
team releases a story every day, or every other day, that might be small enough. You
might find it worthwhile to ask the team what it thinks is small enough. I’m sticking
with my one-day stories.

The larger the number for the story, the greater the uncertainty the team has
for the estimate. See Predicting the Unpredictable [Rot15] for more details
about estimation.

• Click HERE to purchase this book now. discuss

Learn to Estimate with Relative Sizing • 9

http://pragprog.com/titles/jragm
http://forums.pragprog.com/forums/jragm

Use Relative Estimation for Iteration-Based Estimates
If you use an iteration-based agile approach, your team will want to estimate
what it can deliver for the next iteration. It can commit to what it can fit into
an iteration.

To use relative estimation for iteration-based estimates, the product owner
first creates the ranked backlog as described in Plan the Backlog, on page ?.
The team then estimates each story as a team. Some teams use planning
poker cards. Those cards have the Fibonacci series of 1, 2, 3, 5, 8, 13, and
whatever larger numbers the team needs to estimate its work.

Joe asks:

How Do I Use Planning Poker?
When teams create or use the Fibonacci sequence (or any other relative sizing tech-
nique), they can use planning poker.

Every person has a deck of cards with the sizes on the cards. If you use Fibonacci,
every person would have eight cards, one each with 1, 2, 3, 5, 8, 13, 20, and 40.
When the team estimates, someone, often the product owner, holds up a story and
asks, “What’s your estimate for this story?” Each person takes his or her card showing
the relative estimate of each story.

Planning poker is a Wideband Delphi estimation technique. It surfaces concerns and
issues about a story so the team can resolve those issues or concerns, or know that
the story might be troublesome. Planning poker is especially useful when team
members disagree on the story’s relative size. Teams decide what to do: go with a
larger estimate or a smaller one—or break the story down into smaller chunks of
value.

If you have stories of size 1, planning poker is easy. You ask, “Does anyone think this
is larger than a 1?” If so, the team has other choices: spike the story to timebox the
work to one day to understand what else to do, or break up this story, which is really
a feature set, into other stories.

Here’s the problem with relative estimation and deciding what a team can
pull into an iteration: the larger the stories are (larger than a 1), the more
uncertainty the team has about the work it can commit to for an iteration.
Instead of more discussion around estimation, consider a workshop to create
smaller stories or an additional backlog refinement meeting. See Create or
Refine the Stories as Preparation for Future Work, on page ?.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jragm
http://forums.pragprog.com/forums/jragm

Large relative story sizes provide qualitative data: it’s possible the story is
complex; the code might be cruft or this story might be an entire feature set.
The team might need to explore if it can create a more accurate estimate. See
what you can do to help the product owner create stories of size 1 before the
team has to estimate the story.

• Click HERE to purchase this book now. discuss

Use Relative Estimation for Iteration-Based Estimates • 11

http://pragprog.com/titles/jragm
http://forums.pragprog.com/forums/jragm

