
Extracted from:

Create Your Successful Agile Project
Collaborate, Measure, Estimate, Deliver

This PDF file contains pages extracted from Create Your Successful Agile Project,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Create Your Successful Agile Project
Collaborate, Measure, Estimate, Deliver

Johanna Rothman

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Development Editor: Katharine Dvorak
Indexing: Potomac Indexing, LLC
Copy Editor: Candace Cunningham
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 Johanna Rothman.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-260-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—October 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

To Mark, as always.

The 12 Principles of Agile Software Development
Agile principles help a team collaborate. If you live up to the principles, you
will see increments of your product working every day or so. Those increments
allow you to get feedback from your customer and provide feedback and
learning within the team. The following list paraphrases the 12 principles of
agile software development.2

1. Deliver early and often to satisfy the customer.

2. Welcome changing requirements.

3. Deliver working software frequently.

4. Business people and developers must work together.

5. Trust motivated people to do their jobs.

6. Face-to-face conversation is the most efficient and effective method of
conveying information.

7. Working software is the primary measure of progress.

8. Maintain a sustainable pace.

9. Continuous attention to technical excellence and good design enhances
agility.

10. Simplicity—the art of maximizing the amount of work not done—is
essential.

11. The best architectures, requirements, and designs emerge from self-
organizing teams.

12. Reflect and adjust at regular intervals.

Part of agile is the idea of sustainable pace and continuous attention to
technical excellence. When you build small increments and ask for feedback
often, you can welcome change. The change might be in the product or in the
team’s process. Agile teams fine-tune their work and the product when they
reflect and adjust at regular intervals. The principles create the conditions
for success, as mentioned in Agile Is a Cultural Change, on page ?.

2. http://www.agilemanifesto.org/principles.html

• Click HERE to purchase this book now. discuss

http://www.agilemanifesto.org/principles.html
http://pragprog.com/titles/jragm
http://forums.pragprog.com/forums/jragm

The Two Pillars of Lean
For many teams and organizations, the agile principles are not enough. These
teams and organizations need lean thinking to help solidify how agile might
work for them.

For many years, people assumed lean was about manufacturing. Because of
the Toyota Production System (see, for example, Toyota Production System:
Beyond Large Scale Production [Ohn88]), some people thought lean was a
bunch of tools, specifically for manufacturing. Lean is much more than spe-
cific tools such as a kanban board, or a principle such as single-piece flow.

There are two pillars of lean: respect for people and a commitment to contin-
uous improvement. (See the Lean Primer for the pillars as well as an excellent
and brief explanation of lean.3) The two pillars of lean help us create an agile
culture. Lean principles apply to knowledge work as well as manufacturing.

Many teams stumble if they try to use only the 12 principles of agile software
development when they adopt an agile approach. When people add the pillars
and lean thinking, they can make agile work better for their context.

Lean thinking—using the lean principles—helps agile teams use agile
approaches to create better products and deliver more value. Lean thinking
helps people and teams realize they need to visualize their flow of work and
think about value as they apply the agile principles. If you’re wondering about
the source of lean thinking, I recommend reading Lean Thinking [WJ96], Lean
Product and Process Development [War07], The Toyota Way [Lik04], and
especially This Is Lean: Resolving the Efficiency Paradox [MÅ13].

These are the lean principles of software development from Lean Software
Development: An Agile Toolkit for Software Development Managers [PP03]:

1. Eliminate waste.

2. Amplify learning.

3. Decide as late as possible.

4. Deliver as fast as possible.

5. Empower the team.

6. Build integrity in.

7. See the whole.

3. http://www.leanprimer.com/downloads/lean_primer.pdf

• 2

• Click HERE to purchase this book now. discuss

http://www.leanprimer.com/downloads/lean_primer.pdf
http://pragprog.com/titles/jragm
http://forums.pragprog.com/forums/jragm

These principles specifically address the flow of work and the idea that cross-
functional team works together. The agile principles say to work as a collab-
orative cross-functional team and to deliver often.

Iteration- and Flow-Based Agile
Teams use agile approaches in one of two primary ways: iterations or flow.
Yes, you can combine them, too.

An iteration-based agile approach means a team works in timeboxes of the
same size for every iteration (as shown in the following diagram). The team
fixes the duration of the iteration. Teams often work in one- or two-week
iterations (the timebox). Every two weeks, by definition, the team is done
because the timebox is over. The team doesn’t change the duration because
the team can’t estimate what it can complete in a timebox if it keeps changing
the duration.

Requirements
Analysis
Design
Build
Test

Release
Deploy

Requirements
Analysis
Design
Build
Test

Release
Deploy

Repeat as
needed

...

Requirements
Analysis
Design
Build
Test

Release
Deploy

Requirements
Analysis
Design
Build
Test

Release
Deploy

Requirements
Analysis
Design
Build
Test

Release
Deploy

Requirements
Analysis
Design
Build
Test

Release
Deploy

Each timebox is the same size. Each timebox results in running tested features.

Iteration-Based Agile

In iteration-based agile, the product owner and the team manage the work
in progress by estimating the number of stories (and other work) the team
can commit to in a timebox. When the team estimates, the product owner
receives feedback on the estimated size of the work. The product owner then
has choices to make more stories or ask the team to swarm or mob on
the work.

Note that I have included all of the work in a timebox: requirements, analysis,
design, build, test, release, and deploy. Teams perform all of those activities
to deliver finished value. (Sometimes teams release internally but do not
release to customers or deploy each iteration.)

You might think a team does these activities sequentially. Not necessarily.
The team often performs these activities as a team, on one or two features at
a time. I’ll explain more in Chapter 6, Teams Deliver Features, on page ?.
The team performs all these activities, but not necessarily in sequential order
for a given feature. Here’s a quick example: During a planning meeting, the

• Click HERE to purchase this book now. discuss

Iteration- and Flow-Based Agile • 3

http://pragprog.com/titles/jragm
http://forums.pragprog.com/forums/jragm

team—as a team—discusses a couple of possible designs for a given feature,
because the time needed might change depending on the design. A tester
might sketch some possible tests. Even before the team “starts” work on that
feature, the team estimates, designs, and tests—just a little bit. That’s what
I mean by a nonsequential approach to the work.

An iteration-based agile approach provides a cadence—a project rhythm—for
teams to deliver and learn, retrospect, and plan.

In a flow-based agile approach, shown in the next diagram, the team maps
the flow of value through the team. The team sets a WIP limit for each column
on the board and tracks the team’s cycle time—how long features take on
average. The team and the product owner manage the work based on those
limits. After finishing some work, the team delivers and learns, retrospects,
and reviews what it wants to improve.

Feature:
Clarify

Requirement,
Analysis
Design
Build
Test

Release
Deploy

Feature:
Clarify Requirement,

Analysis
Design
Build
Test

Release
Deploy

Repeat as
needed

...

Feature:
Clarify

Requirement,
Analysis
Design
Build
Test

Release
Deploy

Feature:
Clarify

Requirement,
Analysis
Design
Build
Test

Release
Deploy

Feature:
Clarify
Req't,

Analysis
Design
Build
Test

Release
Deploy

Flow-Based Agile

In flow, the team limits the number of features active at any time with WIP limits for each team activity.
There is no timeboxing built into flow.

Flow focuses on the continual pulling of work; iteration more often focuses
on pulling a limited set of work into a defined timebox.

Neither the flow nor the iterations approach is right. Neither is wrong. It’s all
about what your team needs to see the work, release valuable product often,
and get feedback.

I happen to like a flow-based approach inside of some cadence. I like seeing
working product at least every two weeks, which is what I do for my collabo-
rative projects. I deliver value more often for my personal projects—at least
once a day. I want to see where the work starts, where it waits, how long it
waits, if there are any cycles, and so on. Flow and kanban boards can show
you that. Iterations—by themselves—don’t show you details of where work is
stuck.

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jragm
http://forums.pragprog.com/forums/jragm

Distinguish Between Cadence and Iteration
I said that iterations are timeboxes of a week or two, maybe longer if you don’t
need more frequent feedback. I also said that a cadence provides a rhythm
for a project. Let me explain the difference.

Many teams appreciate a cadence for delivery, retrospectives, and more
planning. Not every team needs the focus of a timebox to do that.

One team I know delivers several times during the week. It plans weekly, but
not the same day each week. When the team has finished three features, it
plans for the next three. It takes about 20–30 minutes to plan. It’s not a big
deal. This team retrospects every Friday morning. (I would select a different
day, but the team didn’t ask me. See Organize the Team’s Meetings, on page
?, to see why I prefer midweek cadences.)

Notice that this team has two separate cadences: at least once a week for
planning work, but not the same day each week; and once a week for retro-
spectives, on the same day each week. The team isn’t working in iterations;
it’s working in flow. The team uses the idea of a cadence to provide a pulse,
a rhythm for its project.

If the team used iterations, it would always plan on the same day, at the
beginning of the iteration. The team would always have a retrospective on the
same day at the end of the iteration. This team doesn’t do that, and that’s
great. Teams don’t have to follow prescribed ceremonies, especially if the
team’s context is different from other teams’.

A cadence is different from an iteration. Decide what fits for your team.

Integrate the Agile and Lean Principles
Think about what the agile and lean principles together buy you. These
principles say to use a collaborative cross-functional team structure so that
the entire team works on features. The principles emphasize seeing the work
as it proceeds to get feedback on the work and the process. The principles
caution you to not start more than the team can complete in a short period
of time. And you deliver working product often and as fast as possible to see
progress, increase customer collaboration, and receive feedback.

How can you think about the agile and lean principles for your project? How
can you build respect for the people and continuous improvement into how your
cross-functional, collaborative team can deliver small chunks of value often?
That way, your team can not only deliver often, but also receive feedback often.

• Click HERE to purchase this book now. discuss

Integrate the Agile and Lean Principles • 5

http://pragprog.com/titles/jragm
http://forums.pragprog.com/forums/jragm

Consider How an Agile Approach Might Work for You
I often hear people describe their projects as being “agile/Scrum.” Let me clarify:
“agile” is an umbrella term that encompasses many agile approaches, one of
which is Scrum. Some of those approaches are defined in the following table.

How the Approach WorksNamed Approach

Primarily a collection of technical practices guided by
these values: communication, simplicity, feedback,
courage, and respect.

Extreme
Programming

Timebox-based project-management framework for
delivering working product often.

Scrum

Timeboxed approach to delivering functionality. Facil-
itated workshops to determine the requirements and
gain agreement on them.

DSDM (Dynamic
Systems Develop-
ment Method)

Focus on the people. Depending on the size of the
project team and the product criticality, select the

Crystal

approach that fits for the team, the business people,
and customers.

Deliver functionality incrementally after creating a
(low-fidelity) framework for the architecture or object
modeling. Focus on building value for the customer.

Feature-Driven
Development

Visualize the flow of work, work by value, and manage
the work in progress. Deliver incremental value as the
team completes the value.

Kanban

Table 1—Some Agile Approaches

There are more agile approaches, but these are well-known approaches for
teams.

Scrum is one project-management framework that helps a team adopt agile
techniques.4 Many teams start with Scrum because it is the most famous
approach to agile. Scrum works for collocated teams who work on one project
at a time, and where the team has all the cross-functional skills and capabilities
it requires. And Scrum creates the need for cultural change. However, I have
found teams that meet the following criteria are not good candidates for Scrum:

• Your team works on more than one project at a time. Or the team needs
to provide significant interrupt-driven support or maintenance.

• Your team is distributed across more than four time zones.

4. http://www.scrumguides.org/index.html

• 6

• Click HERE to purchase this book now. discuss

http://www.scrumguides.org/index.html
http://pragprog.com/titles/jragm
http://forums.pragprog.com/forums/jragm

• Your team is not cross-functional. That is, you have a team of developers
trying to collaborate with a team of testers, often across time zones. Or
you have a work group instead of a team.

• Your team does not have the skills or capabilities it needs. You have a
scarcity of some necessary role, such as UX or DBA.

• Your “team” does not need collaboration. All the work is independent, not
interdependent.

In these cases, I do not recommend Scrum as your agile approach. (Can you
make Scrum work? Of course. It’s more difficult than an agile approach has
to be, but you can try.) I recommend you integrate flow into your agile design.
You might also use iterations for a cadence of planning and delivery.

As described in Iteration- and Flow-Based Agile, on page 3, iteration-based
agile uses timeboxes to manage the scope of work the team will complete. Scrum
is similar, and also offers specific roles, such as the Scrum master and product
owner. In addition, Scrum incorporates several events, including these:

• The daily standup

• The preiteration planning meeting (which Scrum calls the Sprint Planning
meeting)

• The backlog-refinement meeting before the next iteration

• The demonstration to show and explain what the team completed in the
last iteration (In Scrum, this is the sprint review and includes the team’s
assessment of whether it achieved the sprint goal.)

• The retrospective at the end of the iteration

You might decide these events are for you. However, you don’t need to use
Scrum to use an agile approach—even an iteration-based approach—that
works for you. You might find that given your context, choosing an alternative
or designing your agile approach works better.

I have seen people and teams use the agile and lean principles to progressively
move to agile approaches as it fits for them. I recommend you do, too. The
more your team is resilient and adaptive, the easier it is to create a great
project that delivers a successful product.

You do not need to name your agile approach. I recommend you design an
agile approach that incorporates the values and principles of agile and lean,
rather than try to stick to a framework, regardless of its fame.

• Click HERE to purchase this book now. discuss

Integrate the Agile and Lean Principles • 7

http://pragprog.com/titles/jragm
http://forums.pragprog.com/forums/jragm

