Extracted from:

iOS Unit Testing by Example

XCTest Tips and Techniques Using Swift

This PDF file contains pages extracted from iOS Unit Testing by Example, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or
PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2020 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina

http://www.pragprog.com

Th
Pr ema’tic
ogramimers

iOS Unit Testing
by Example

XCTest Tips and
Techniques Using Swift

Jon Reid
edited by Michael Swaine

iOS Unit Testing by Example

XCTest Tips and Techniques Using Swift

Jon Reid

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow
Executive Editor: Dave Rankin
Development Editor: Michael Swaine
Copy Editor: Adaobi Obi Tulton
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2020 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-681-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—June 2020

https://pragprog.com
support@pragprog.com
rights@pragprog.com

For Kay, who believed in me

CHAPTER 6

Manage Difficult Dependencies

When you realize you can write unit tests against view controllers, it’s exciting.
At first, you may think this will unlock your codebase to automated testing:
“I can test anything!”

Unfortunately, as you try to make progress, you'll experience setbacks and
frustrations. Sure, you can write a test that accesses a particular view con-
troller. But as soon as you try to have a test call some method, you find the
code inside the view controller is fighting you.

This is true of any types, not only view controllers. Code written without tests
often has implicit hardwired dependencies. These dependencies can complicate
testing. It so happens that view controllers are especially susceptible to such
problems. It’'s easy to lump functionality (and the dependencies needed to
perform it) into a view controller.

When testing is difficult, this reveals flaws in the architectural design of the
code. By making changes to enable testing, you’ll be shaping the code into
cleaner design. Design decisions that were once hidden and implicit will
become visible and explicit.

In this chapter, we’ll learn how to identify difficult dependencies. Having
identified them, we’ll explore some techniques for isolating these dependencies.
This will give you ways to write unit tests against previously untestable code.

Be Okay with Problem-Free Dependencies

Law enforcement agents learn how to detect counterfeit money by studying
genuine money. Let’s apply this idea to dependencies. Before looking at difficult
dependencies, let’s see what makes some dependencies problem-free.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jrlegios
http://forums.pragprog.com/forums/jrlegios

°8

Consider the following function:

func shoutHello(to name: String) -> String {
return "HELLO, \(name.uppercased())!"

}

What dependencies does it have? This is a trick question because it’s easy to
reply, “It has no dependencies.” But it does depend on the Swift String type.
Our function calls the uppercased() method. Swift takes the result and does
string interpolation. String interpolation prefers calling the description property
of the CustomStringConvertible protocol.

There are word lawyers who insist that a test is not a unit test if it exercises
more than one type. Yet no one would blink an eye at writing tests for
shoutHello(to:) and calling them unit tests. So why is this dependency okay to
test without isolating it?

To answer this, let’s start with three of the FIRST unit test principles.' The
first three apply to dependencies:

F for Fast Both functions—the uppercased() method and the description computed
property—are fast. We're not in any danger of pushing up against the rule
of thumb from Working Effectively with Legacy Code [FeaO4].

A unit test that takes 1/10th of a second to run is a slow unit test.

I for Isolated Neither function has any side effects that would persist beyond
the test run. Tests that exercise shoutHello(to:) won't get different results
due to external factors. And the tests won’t have any effect on each other.

R for Repeatable Calling these two functions with the same input will always
yield the same output. There are no external services that might fail. There
are no race conditions. The time of day (or phase of the moon) will make
no difference.

(The last two of the FIRST principles don’t apply to dependencies. So you're
not left wondering what they are, S is for self-verifying. This means using
assertions to pass or fail without human verification. And T is for timely. This
means tests have more value when written before the production code.)

After fast, isolated, and repeatable, there’s one more question that helps us
classify dependencies.

Easy to Test? When something calls a dependency, how can we know if the
call was correct? If there’s a return value, it's easy. We can check the

1. https://pragprog.com/magazines/2012-01/unit-tests-are-first

« Click HERE to purchase this book now. discuss

https://pragprog.com/magazines/2012-01/unit-tests-are-first
http://pragprog.com/titles/jrlegios
http://forums.pragprog.com/forums/jrlegios

Identify Difficult Dependencies ® 9

return value, or any computation that uses the return value. For
shoutHello(to:), the calls to String’s uppercased() and description affect the function’s
return value. Tests can simply check the return value.

What if there is no return value? Chances are good the call causes some
state to change. If we can check a property of the dependency for an
expected value, that’s also easy.

But if a call has an external effect we can’t access, that dependency is
harder to test.

If we take fast, isolated, and repeatable and combine it with easy to test, we
get FIRE. If a dependency satisfies the FIRE rules, we can use it as is. Writing
tests with it won’t be difficult.

Identify Difficult Dependencies

Now that we have some rules to gauge if a dependency is problem-free, let’s
break each FIRE rule. This will help us learn which kinds of dependencies get
in the way of simple tests.

F for Fast i0S programs often include code that will execute in response to
some external trigger. In later chapters, we’ll see how to unit test delegate
methods. But if there’s no way for tests to trigger the code execution
immediately, that’s a slow dependency. Examples include the following;:

e Calls to web services
e Timers

I for Isolated Dependencies break the rule of isolation in two common ways:
global variables and persistent storage.

Global variables come in different varieties:

¢ Variables defined outside of any type
e Singletons
e Static properties

Globals aren’t a problem if they're read-only, such as string constants.
It's when we can change the value of a global that we run into the chal-
lenges of shared mutable state. One test can set a value that affects a
following test.

Persistent storage is similar, except that we store the state in something
that outlasts the app’s life cycle. This includes the following:

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jrlegios
http://forums.pragprog.com/forums/jrlegios

The file system

e UserDefaults

¢ The keychain

¢ A local database

¢ A remote database

Recall from Chapter 2, Manage Your Test Life Cycles, on page ? that we
need each test to run in a clean room. Earlier test runs or manual testing
should not change the outcome of automated tests. And automated tests

should leave no trace that affect later manual testing.

R for Repeatable What dependencies are there that yield different results
when called? We expect different results for the following:

e Current time or date

e Camera or microphone input
e Face ID or Touch ID

e Core Motion sensors

e Random numbers

We can anticipate those differences. But there are also unpredictable
differences:

¢ External services—they can fail.

e Writing to a log file—we can run out of disk space.

e Time zone of the machine running tests—when writing tests, it’s easy
to assume they’ll always run in your own time zone. Hidden problems
will surface if your development team grows globally.

Easy to Test? It’s not hard to test functions that return values or change
properties. But there are also functions that cause side effects outside of
the invoked type. Such dependencies take commands but offer no way to
access the effects of those commands. Examples include the following:

e Analytics
¢ Playing audio or video

Analytics includes any system of logging events to a server. We can send
events, but there’s no way for the mobile API to ask for the last batch of
events you sent.

This isn’t a complete list of difficult dependencies. But they illustrate guidelines
that will help you identify most of them. Next, we’ll see how to isolate them.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jrlegios
http://forums.pragprog.com/forums/jrlegios

Create Boundaries to Isolate Dependencies ® 11

Create Boundaries to Isolate Dependencies

Once we've identified dependencies that make testing difficult, what do we
do with them? We need to find ways to isolate them behind boundaries.
Having isolated them, we can replace them with substitutes during testing.

In well-structured code, we can summarize our code as boxes of functionality.
An arrow line from one box to another represents a dependency. With careful
design, these boxes and arrows form a directed acyclic graph. By avoiding
cycles, we make it easier to replace functionality. This brings benefits to
ongoing maintenance that extend beyond testability.

We can implement boundaries using Swift protocols. With protocols in place,
we can substitute different concrete types. But to even begin using a protocol,
we need a place where we make the current type explicit. Once we spell out
the type, we’ll be able to switch it to a protocol.

There are various techniques for making dependencies explicit. To illustrate
them, let’s make another project for our experiments.

Make a New Place to Play

Now we're ready to create a new project for this chapter. Follow the steps for
Create a Place to Play with Tests, on page ?, but name the project HardDe-

pendencies. Also delete that initial test file, HardDependenciesTests.swift.

We don’t need to apply Chapter 4, Take Control of Application Launch, on

true for most of the book, so I won’t continue to repeat this.)

To simulate a difficult dependency, let’s pretend we're using an analytics API
to track events. Make a new file in production code named Analytics.swift:

HardDependencies/HardDependencies/Analytics.swift
class Analytics {
static let shared = Analytics()

func track(event: String) {
print(">> " + event)

if self !== Analytics.shared {
print(">> ...Not the Analytics singleton")

}
}

This API provides a shared instance to use as a singleton. As a “soft” singleton,
it doesn’t restrict us from creating separate instances.

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/Analytics.swift
http://pragprog.com/titles/jrlegios
http://forums.pragprog.com/forums/jrlegios

°12

Let’s pretend the track(event:) instance method sends the event to a web service.
We'll simulate it with a print(_:) statement, and observe the results in the console
log. It also prints a message if the Analytics instance is not the singleton.

Besides an API we can’t control, we’ll also see an approach for singletons we
own and can change. Make a second file in production code named MySingleto-
nAnalytics.swift:

HardDependencies/HardDependencies/MySingletonAnalytics.swift

class MySingletonAnalytics {
static let shared = MySingletonAnalytics()

func track(event: String) {
Analytics.shared.track(event: event)

if self !== MySingletonAnalytics.shared {
print(">> Not the MySingletonAnalytics singleton")
b

}

It's similar but wraps a call to the original Analytics class. We'll use this for Add
Backdoors to Singletons You Own, on page ?.

Add Storyboard-Based View Controllers

To experiment with different techniques, let's make several view controllers.
First let’s add two view controllers to the storyboard. Select the HardDepen-
dencies group. Make a new file, selecting Cocoa Touch Class. Name it Instance-
PropertyViewController and make it a subclass of UlViewController. In the Save dialog,
double-check that the app target is selected, not the test target.

Now let’s add this view controller to the storyboard. Open Main.storyboard and
select View » Libraries » Show Library from the Xcode menu, or press
Shift- 8 -L. This will bring up the Object Library. Double-click “View Controller”
to add a new view controller to the storyboard.

This will create a generic view controller, which we need to change to our
specific type. Select the second “View Controller Scene” that we just added,
like you see here:

B2 < & HardDependencies
»> View Controller Scene

[& View Controller Scene

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jrlegios/code/HardDependencies/HardDependencies/MySingletonAnalytics.swift
http://pragprog.com/titles/jrlegios
http://forums.pragprog.com/forums/jrlegios

In the Xcode menu, select View » Inspectors »

Make a New Place to Play ® 13

Show Identity Inspector or

press \X-&-4. In the Identity Inspector on the right, the Custom Class section
will show that the class of the selected view controller is UlViewController. (If it
shows ViewController, that’s the wrong one.) Click the down arrow for Class to
reveal the pop-up menu, and select InstancePropertyViewController.

We're going to have a test load this view controller, so we need to apply the
trick from Load a Storyboard-Based View Controller, on page ?. In the

Identity Inspector, copy and paste the Class name into the Storyboard ID.

NN ORNONN == |

Custom Class

T+ B ©

Class | InstancePropertyViewCo...

Module |

Inherit Module From Target

Identity

Storyboard ID |InstancePropertyViewControIIer |

Restoration ID |

[Use Storyboard ID

Now we have one storyboard-based view controller we can use in a test. Repeat
these steps to create another view controller, naming it ClosurePropertyViewCon-
troller. You should end up with three scenes in Main.storyboard—the first there

by default, and the two you just added.

Add XIB-Based View Controllers

Now we’ll add view controllers that use XIBs. Select the HardDependencies
group in the Project Navigator. Make a new file, selecting Cocoa Touch Class.
Name it OverrideViewController and make it a subclass of UlViewController. This time,

select the check box labeled “Also create XIB file.”

In the Save dialog, double-check that the app target is selected, not the test
target. Pressing Create will add OverrideViewController.swift and OverrideViewController.xib

to the project.

Now we have one XIB-based view controller we can use in a test. Repeat these
steps to make the following additional view controllers:

¢ |nstancelnitializerViewController
e ClosurelnitializerViewController
e MySingletonViewController

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jrlegios
http://forums.pragprog.com/forums/jrlegios

