
Extracted from:

Manage It!
Your Guide to Modern,

Pragmatic Project Management

This PDF file contains pages extracted from Manage It!, published by the Pragmatic

Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.
Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2007The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com


Manage It!
Your Guide to Modern,

Pragmatic Project Management

Johanna Rothman

The Pragmatic Bookshelf
Raleigh, North Carolina Dallas, Texas



Chapter 11

Creating and Using a Project
Dashboard

Most of the questions you answer come down to some variant of this

question: “Where are we?”

This could come from senior management trying to figure out whether

you’re going to hit a deadline or from the project team asking about

their status. It soon feels like they’re in the backseat of your car on a

long trip asking, “Are we there yet?”

The key to understanding a project is to make regular measurements—

both quantitative and qualitative—and display the measurements pub-

licly. When project managers display these measurements as part of the

project status, teams are able to adjust their work and proceed more

successfully.

This collection of measurements comprises your project dashboard.

Taken together, the project measurements display your velocity, dis-

tance, consumption, and location—much as a car dashboard does.

Creating a project dashboard provides feedback to the team and reports

status to other interested people. Use a Big Visible Chart or Information

Radiator [Coc04] so that everyone can see the project’s progress.

11.1 Measurements Can Be Dangerous

Measurement involves three big problems: the project team spending

too much time on measurement to the detriment of the work, gaming

the system, and measuring the people instead of the project.



MEASUREMENTS CAN BE DANGEROUS 215

It’s easy to spot and fix people spending too much time measuring. Are

your project staff members generating paperwork and measurements

rather than performing the work? The measurements in this chapter

are all obtainable by you, the project manager. Most of the project staff

shouldn’t have to help you obtain project measurements. You might

need help from someone who manages the SCM or the DTS. (If you

need to measure performance or reliability, you might need developers

or testers to help you measure that.) If you need help from more than a

couple of people, work on your project infrastructure support. The goal

of the dashboard is to use the data to assess the project state, not to

spend time creating the dashboard.

It is often harder to spot people gaming the system, but the cause

is often that only a single factor is being measured. You’re likely to

see schedule games (see Chapter 6, Recognizing and Avoiding Schedule
Games, on page 103) and other behavior that doesn’t help the project

progress. There’s a famous Dilbert strip where the boss says he’ll pay

each developer some amount of money to fix defects. Wally, one of the

characters says, “I’m going to write me a minivan.” Wally is planning to

write a whole lot of defects and then fix them. If you measure only one

thing, you encourage people to optimize for that one thing. Make sure

you have multiple measurements for assessing project progress.

When you choose measurements, make sure you measure the project

and the product, not the people [Aus96]. If you measure anything that

can be traced directly back to one person or another, you are measuring

people, not the project or the product. Measuring people begs them to

game the system, preventing you from understanding the project’s state

and possibly preventing the project from completing. Never measure

people.

It’s easy to measure some facets of a project, such as the project start

date, the current date, and the desired release date and say, “We’re X

percent of the way along,” because the project team has used that per-

centage of time. (See Section 11.2, Earned Value for Software Projects
Makes Little Sense, on page 220.) If all you measure is the schedule,

you’re guaranteed not to meet the desired deadline.

In fact, measuring any single dimension can’t give you a full enough

picture of the status of your project. If you’re driving a car and look

at the mileage for this tank of gas but don’t look at your miles per

gallon and the miles left to drive, you still don’t know whether you have

enough gas to get you to your destination.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jrpm


MEASUREMENTS CAN BE DANGEROUS 216

To obtain a true picture of the your project’s state, choose at least four

out of six dimensions of the project drivers, constraints, and floats from

Section 1.2, Manage Your Drivers, Constraints, and Floats, on page 21 to

measure and display on your project dashboard. Those four dimensions

capture the areas you are most likely to be able to modify during the

project. And if you don’t measure them, you can’t see what to change

to make your project succeed.

Tip: Use Multidimensional Measurements to Assess Project

Progress

There are any number of references that say, “You get what

you measure.” And, as you saw in Section 11.1, Measure-
ments Can Be Dangerous, on page 214, it’s possible people

will want to game the measurement. Since you will get exactly

what you measure, make sure you measure enough infor-

mation about the project to provide an honest assessment of

project progress.

Rob, a VP of engineering called me, confounded. “JR, those freaking

testers! They can’t do anything right.” Rob’s project had 1,500 devel-

opers and about 350 testers. I had met a few testers before, so I said,

“That’s funny, the people I met seemed to know what they were doing.”

“No way,” Rob quipped, “the developers meet every single milestone. The

testers don’t meet any. I need you right away to do an assessment.”

Well, developers meeting every milestone is a suspicious statement. I

know a lot of developers. And even the best don’t always meet their

schedules. I started the assessment with an open mind. Maybe all

1,500 developers really are incredible.

But here’s what I discovered. The developers have to report only dates to

the project managers. That’s it. And the project managers measure only

dates from the developers and defects from the testers. There’s no mea-

surement of anything else on the project. When I talked to developers

about their work, it all became clear. Danny grimaced and explained,

“I have to start the feature when the Gantt says to; otherwise, I get

marked down on my performance evaluation. I put stubs in, so I ‘fin-

ish’ it on time. When the testers report a problem, I fix the problem.”

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jrpm


MEASURE PROGRESS TOWARD PROJECT COMPLETION 217

Joe Asks. . .

Can I Ever Start Measuring Over?

You can. I don’t recommend it, because generally the system
(the process and the people) that’s creating problems—such
as starting the project a month late—doesn’t recognize the sys-
tem is doing this. Without a chart to show why you’ve been
behind since the beginning, you won’t be able to change the
system of how projects start.

Instead of remeasuring, draw a line on the chart with something
like “Original Start Date” and “Actual Start Date.” Then show
the triggering event that led to the “Actual Start Date.” (See
Figure 11.7, on page 227.)

Rob’s organization has broken projects (and products)—projects that

don’t deliver what Rob needs. As long as he persists in single-dimension

measurement for a group of people (dates for developers and defects for

testers), they will have broken projects. The only cure for Rob is to have

the project managers measure all around the project so that they can

tell more accurately where the project is.

11.2 Measure Progress Toward Project Completion

By using several measurements from the drivers, constraints, and

floats, you can measure the team’s progress toward project comple-

tion. Project completion is a function of how accurate your original esti-

mate was and how much progress you’ve made. But measuring only the

schedule progress is not good enough. The only accurate way to mea-

sure progress for a software project is to measure how many features

the project team has completed, how good those features are, and how

many features are left to implement.

Use Velocity Charts to Track Schedule Progress

If you’re implementing by feature, a velocity chart (such as Figure 11.1,

on the following page) is a great progress indicator to how much progress

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jrpm


MEASURE PROGRESS TOWARD PROJECT COMPLETION 218

















































































Figure 11.1: Velocity Chart for a Project

the team has made on the project.1 And it can give you an indication

about how much work is left.

Here’s how you make a velocity chart. Add up the number of features—

that’s your total features. As you finish a feature, add 1 to the number

of features done, and decrease the number of features left. If you have

to add more features during the project, add those extra features to the

total features. Even if your features aren’t normalized to be the close to

the same size, this chart will help.

If you use inch-pebbles and you’re not implementing by feature, track-

ing inch-pebbles (Section 8.10, Use Inch-Pebbles, on page 173) can help

you know where you are. But that won’t be as accurate as implement-

ing by feature. Whatever you do, don’t just ask people whether they’ve

met their milestones without looking to see how good the stuff is that

they are producing.

1. See http://www.xprogramming.com/xpmag/jatRtsMetric.htm.

CLICK HERE to purchase this book now.

http://www.xprogramming.com/xpmag/jatRtsMetric.htm
http://www.pragmaticprogrammer.com/titles/jrpm


MEASURE PROGRESS TOWARD PROJECT COMPLETION 219

Tip: Velocity Charts Are the Single-Best Chart

If you can make only one chart, choose a velocity chart.

Velocity charts use three measurements (requirements, com-

pleted work, and date), all on one chart. They don’t provide a

picture of defects or cost, two more measures you might like

to see. But they provide an overall picture of progress on one

chart.

Because you’re measuring several trends on one chart: total

requirements and completed work, including all the testing

and documentation and whatever else your project requires

over time, it’s the single-best chart. If you’re working with-

out implementing by feature, the chart shows no completed

work, which is exactly the state your project is in. Velocity

charts are your friend.

Use an Iteration Contents Chart to Track Overall Progress

In addition to a velocity chart that tracks implemented features over

time, you might want a finer-grained look at what’s going on in each

iteration. (Even if you’re not using timeboxed iterations, generate this

chart over a fixed time period. That will help you see when requirements

changes and defects arrive in the project.)

In Figure 11.2, on the following page, you can see how the release’s con-

tents change over time. In this project, the team started with a velocity

of six features per iteration. By they time they got to the ninth iteration,

they were down to two features, plus two changes and four defects. At

that point, the project manager realized things could only get worse

and stopped changing the iteration’s backlog during the iteration. That

allowed the team to make much more progress in the last three itera-

tions.

Until the project manager generated this chart, no one had any idea

about the cost of the changes during an iteration and the introduction

of defects those changes caused.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jrpm


MEASURE PROGRESS TOWARD PROJECT COMPLETION 220





























Figure 11.2: Iteration contents chart for a project

Earned Value for Software Projects Makes Little Sense

Earned value is a measure of the value of work performed to date.2 But

because software is ephemeral and ever-changing, it’s close to impos-

sible to calculate the true earned value. If you can’t clearly define it,

you can’t really measure it. Resist the attempts from your organization

to have you report on earned value. For a tangible product, it’s easy

to calculate earned value. If you’re building a table, you can calculate

the cost of the materials and time to see whether the legs and the top

have value even before you put the table together. But earned value is

different for software.

Here’s an example. Say you have five requirements to complete in ten

weeks. Imagine that you and the project team believe it will take the

entire team two weeks per requirement. And, imagine you have five

people on the team. Your estimate is ten effort-weeks per requirement,

a total of fifty effort-weeks. Imagine the team has finished the first three

requirements, including testing them, as in Figure 11.3, on page 222.

2. © 2007 R. Max Wideman, http://www.maxwideman.com; reproduced with permission.

CLICK HERE to purchase this book now.

http://www.maxwideman.com
http://www.pragmaticprogrammer.com/titles/jrpm


MEASURE PROGRESS TOWARD PROJECT COMPLETION 221

Joe Asks. . .

How Can We Have No Completed Work?

You’ve been working hard for months on your project. No one
has been slacking off. But when you try to use a velocity chart, it
shows you no (or virtually no) completed work. How is that pos-
sible? It’s possible—and even likely—if you’re using a serial life
cycle or implementing by architecture in any life cycle, without
planning how to finish features.

When a project team uses a serial life cycle or implements by
architecture, they have lots of partially completed work. Par-
tially completed work is called waste in the lean community. It’s
waste because it’s not done. Because velocity charts show you
completed work, you can tell whether the team is producing
waste or a completed product.

The more you use incremental, or even better, agile techniques,
the more your velocity chart will show what you’ve done. Being
able to show the project team what is done helps maintain the
project rhythm and helps people accomplish more.

The customer sees what the team has done so far. “Looks great, but I

really need it to do foo over here and blatz over there.”

The “foo” and “blatz” features will cost another two team-weeks each.

Your original calculation was that you had 60% of the work done in

60% of the time. You were on track. You are now not even close to on

track. But you have feedback from the customer earlier than the end of

the project, and you can give the customer what the customer wants.

How much value do you have? I don’t know how to answer that ques-

tion, because it doesn’t account for the fact that the customer didn’t

realize what he or she wanted wasn’t enough for the time allocated

for the project. The initial measurements were wrong. Your project has

some value. Maybe the work to date has even more value than you

thought because the customer realized early that the requirements

weren’t quite right. But you are no longer 60% done; you’re at some

other percentage.

Some organizations like to use “Percent Complete.” I don’t agree with

that either. All too often this refers to only the development piece, but

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jrpm


MEASURE PROGRESS TOWARD PROJECT COMPLETION 222





















   














Figure 11.3: A six-week velocity chart

not the testing part. Pieces of the product that haven’t been tested

aren’t complete. Using “Percent Complete” begs people to start with

schedule games such as the one covered in Section 6.14, 90% Done, on

page 131.

If you want to know your progress, use a velocity chart showing run-

ning tested features. A velocity chart shows the team’s actual progress

against the planned progress. And it shows that change happens to a

project and how much change is occurring.

So, just say no to earned value. Use velocity charts instead.

Track Your Original Estimate with EQF

Tom DeMarco in [DeM86] described a measure called estimation quality
factor (EQF). EQF helps you understand how good the initial estimate

was. At periodic intervals during the project, the project team answers

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jrpm


MEASURE PROGRESS TOWARD PROJECT COMPLETION 223





















          

  















Figure 11.4: Estimation quality factor

this question: “When do you think we’ll be done?” Each data point is

the consensus agreement on when the project team believes the project

will be finished. At the end of the project, draw a line backward from

the release date to the beginning of the project. For an example, see

Figure 11.4. The area between the line you drew and the when-will-

we-be-finished line is how far off your estimation was. This is a great

technique for people to use as feedback on their individual estimates.

But even if you don’t use it for feedback, it’s a great technique for the

project manager to see what’s happening.

Maybe you’re concerned: there’s a penalty in EQF for discovering new

requirements later. That’s true. EQF is not a perfect measure. But if

you’re not going to use an agile life cycle, late requirements (or late-

learned requirements) do bring a penalty. I’d rather see why the project

is suffering from a delay than not know why.

If you’re using an agile life cycle, your velocity charts will provide you

a quantitative answer, rather than a qualitative answer. But if you’re

not using an agile life cycle, EQF is a great qualitative measure of how

close your estimate is.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jrpm


MEASURE PROGRESS TOWARD PROJECT COMPLETION 224




















































































































Figure 11.5: Tommy’s estimation quality factor

Figure 11.4, on the preceding page is a chart of an EQF for a project

that was originally supposed to be nine months long. For the first cou-

ple of months, when the project manager asked when people thought

they’d finish, they said September 1. And for a couple of months, they

were optimistic, thinking that they might finish early. But during the

fifth month, team members realized they didn’t know enough about

some of the requirements. What they discovered changed the archi-

tecture and pushed out the date. For the next few months, they still

weren’t sure of the date. They realized in the last three months of the

project that, because of the changing architecture, they were encoun-

tering many defects they hadn’t anticipated. Evaluating EQF, a quali-

tative metric, was helpful to the project manager and the project team

as a check against the progress charts.

EQF isn’t just for software projects. A person can use this technique

when performing any project work. I used it when writing this book.

You can use it with developers (or testers or writers or whomever) to

coach them about their estimation.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jrpm


MEASURE PROGRESS TOWARD PROJECT COMPLETION 225

Tommy was working on a feature that he thought would take him three

weeks to complete. He made sure he had several deliverables each

week, his inch-pebbles. As he completed an inch-pebble, he updated

his EQF for the feature. See Figure 11.5, on the previous page. He

thought he was lucky with delivering the pieces early. He didn’t change

his EQF until about halfway through the feature, even though he had

managed to complete most of his deliverables early for the first part of

the feature.

As Tommy proceeded, he didn’t quite make the progress he thought he

would. He was still on track for his original estimate but was not going

to meet the earlier date.

Schedule estimates are just guesses, so anything you can do to show

and then explain why your schedule varies from the initial plan will be

helpful to anyone who wants to know “Where are we?”

More Measurements Tell the Rest of the Story

Project completion measurements might be all your managers want to

see, but if you’re a project manager or a technical lead on a project

team, I’m sure you’d like some early warning signs that the schedule

might not be accurate. To keep my finger on the pulse of a project, I

monitor several measurements:

• Schedule estimates and actuals, aside from EQF. If you use veloc-

ity charts, you get this as part of velocity.

• When people (with the appropriate capabilities) are assigned to the

project vs. when they are needed.

• Requirements changes throughout the project. If you use velocity

charts, you get this as part of velocity.

• Fault feedback ratio throughout the project if you’re not using an

agile life cycle. See Section 11.2, See Whether the Developers Are
Making Progress or Spinning Their Wheels, on page 230.

• Cost to fix a defect throughout the project, especially if you’re not

using an agile life cycle.

• Defect find/close/remaining open rates throughout the project.

Note that these are assessment measurements, not measurements that

are trying to find the problems in the project. These measurements will

expose problems but might not be sufficient by themselves to see the

real problems. The power from the measurement comes from looking at

all of these measurements together.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/jrpm


A Pragmatic Career
Welcome to the Pragmatic Community. We hope you’ve enjoyed this title.

If you’ve enjoyed this book by Johanna Rothman, and want to advance your management

career, you’ll be interested in seeing what happens Behind Closed Doors. And see how you

can lead you team to success by using Agile Retrospectives.

Behind Closed Doors
You can learn to be a better manager—even a great
manager—with this guide. You’ll find powerful tips

covering:

• Delegating effectively • Using feedback and

goal-setting • Developing influence • Handling

one-on-one meetings • Coaching and mentoring
• Deciding what work to do-and what not to do

• . . . and more!

Behind Closed Doors Secrets of Great

Management

Johanna Rothman and Esther Derby
(192 pages) ISBN: 0-9766940-2-6. $24.95

http://pragmaticprogrammer.com/titles/rdbcd

Agile Retrospectives
Mine the experience of your software development
team continually throughout the life of the project.

Rather than waiting until the end of the project—as

with a traditional retrospective, when it’s too late to
help—agile retrospectives help you adjust to

change today.

The tools and recipes in this book will help you

uncover and solve hidden (and not-so-hidden)

problems with your technology, your methodology,
and those difficult “people issues” on your team.

Agile Retrospectives: Making Good Teams Great

Esther Derby and Diana Larsen

(170 pages) ISBN: 0-9776166-4-9. $29.95

http://pragmaticprogrammer.com/titles/dlret

http://pragmaticprogrammer.com/titles/rdbcd
http://pragmaticprogrammer.com/titles/dlret


Competitive Edge
Need to get software out the door? Then you want to see how to Ship It! with less fuss and
more features. And every developer can benefit from the Practices of an Agile Developer.

Ship It!
Page after page of solid advice, all tried and tested

in the real world. This book offers a collection of
tips that show you what tools a successful team

has to use, and how to use them well. You’ll get

quick, easy-to-follow advice on modern techniques

and when they should be applied. You need this

book if: • You’re frustrated at lack of progress on

your project. • You want to make yourself and your

team more valuable. • You’ve looked at
methodologies such as Extreme Programming (XP)

and felt they were too, well, extreme. • You’ve

looked at the Rational Unified Process (RUP) or
CMM/I methods and cringed at the learning curve

and costs. • You need to get software out the

door without excuses

Ship It! A Practical Guide to Successful Software

Projects

Jared Richardson and Will Gwaltney
(200 pages) ISBN: 0-9745140-4-7. $29.95

http://pragmaticprogrammer.com/titles/prj

Practices of an Agile Developer
Agility is all about using feedback to respond to

change. Learn how to apply the principles of agility
throughout the software development process •

Establish and maintain an agile working

environment • Deliver what users really want •
Use personal agile techniques for better coding and

debugging • Use effective collaborative

techniques for better teamwork • Move to an agile

approach

Practices of an Agile Developer: Working in the

Real World

Venkat Subramaniam and Andy Hunt

(189 pages) ISBN: 0-9745140-8-X. $29.95

http://pragmaticprogrammer.com/titles/pad

http://pragmaticprogrammer.com/titles/prj
http://pragmaticprogrammer.com/titles/pad


Cutting Edge
Now that you’ve finished your project, are you sure that it’s ready for the real world? Are
you truly ready to Release It! in this crazy world?

Interested in Ruby on Rails, but don’t want to learn another framework from scratch?

You don’t have to! Rails for Java Programmersleverages you and your team’s knowledge
of Java to quickly learn the Rails environment.

Release It!
Whether it’s in Java, .NET, or Ruby on Rails,
getting your application ready to ship is only half

the battle. Did you design your system to survive a

sudden rush of visitors from Digg or Slashdot? Or
an influx of real world customers from 100 different

countries? Are you ready for a world filled with

flakey networks, tangled databases, and impatient

users?

If you’re a developer and don’t want to be on call at
3AM for the rest of your life, this book will help.

Design and Deploy Production-Ready Software

Michael T. Nygard

(368 pages) ISBN: 0-9787392-1-3. $34.95

http://pragmaticprogrammer.com/titles/mnee

Rails for Java Developers
Enterprise Java developers already have most of
the skills needed to create Rails applications. They

just need a guide which shows how their Java

knowledge maps to the Rails world. That’s what
this book does. It covers: • The Ruby language

• Building MVC Applications • Unit and

Functional Testing • Security • Project
Automation • Configuration • Web Services

This book is the fast track for Java programmers

who are learning or evaluating Ruby on Rails.

Rails for Java Developers

Stuart Halloway and Justin Gehtland

(300 pages) ISBN: 0-9776166-9-X. $34.95

http://pragmaticprogrammer.com/titles/fr_r4j

http://pragmaticprogrammer.com/titles/mnee
http://pragmaticprogrammer.com/titles/fr_r4j


Facets of Ruby Series
If you’re serious about Ruby, you need the definitive reference to the language. The Pick-

axe: Programming Ruby: The Pragmatic Programmer’s Guide, Second Edition. This is the
definitive guide for all Ruby programmers. And you’ll need a good text editor, too. On the

Mac, we recommend TextMate.

Programming Ruby (The Pickaxe)
The Pickaxe book, named for the tool on the cover,
is the definitive reference to this highly-regarded

language. • Up-to-date and expanded for Ruby

version 1.8 • Complete documentation of all the

built-in classes, modules, and methods
• Complete descriptions of all ninety-eight standard

libraries • 200+ pages of new content in this

edition • Learn more about Ruby’s web tools, unit
testing, and programming philosophy

Programming Ruby: The Pragmatic

Programmer’s Guide, 2nd Edition

Dave Thomas with Chad Fowler and Andy Hunt

(864 pages) ISBN: 0-9745140-5-5. $44.95

http://pragmaticprogrammer.com/titles/ruby

TextMate
If you’re coding Ruby or Rails on a Mac, then you

owe it to yourself to get the TextMate editor. And,
once you’re using TextMate, you owe it to yourself

to pick up this book. It’s packed with information

which will help you automate all your editing tasks,
saving you time to concentrate on the important

stuff. Use snippets to insert boilerplate code and

refactorings to move stuff around. Learn how to

write your own extensions to customize it to the
way you work.

TextMate: Power Editing for the Mac

James Edward Gray II

(200 pages) ISBN: 0-9787392-3-X. $29.95

http://pragmaticprogrammer.com/titles/textmate

http://pragmaticprogrammer.com/titles/ruby
http://pragmaticprogrammer.com/titles/textmate


The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards
and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Manage It! Home Page

http://pragmaticprogrammer.com/titles/jrpm

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: pragmaticprogrammer.com/titles/jrpm.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

http://pragmaticprogrammer.com/titles/jrpm
http://pragmaticprogrammer.com/updates
http://pragmaticprogrammer.com/community
http://pragmaticprogrammer.com/news
http://pragmaticprogrammer.com/titles/jrpm
http://www.pragmaticprogrammer.com/catalog

