Extracted from:

The Way of the Web Tester

A Beginner’s Guide to Automating Tests

This PDF file contains pages extracted from The Way of the Web Tester, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2016 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina


http://www.pragprog.com

The Way of the
Web Tester

A Beginner’s Guide to
Automating Tests

Jonathan Rasmusson
edited by Susannah Pfalzer



The Way of the Web Tester

A Beginner’s Guide to Automating Tests

Jonathan Rasmusson

The Pragmatic Bookshelf

Raleigh, North Carolina



Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The yellow adhesive note graphic in Chapter 11 is designed by Layerace from Freepik.com.

The team that produced this book includes:

Susannah Davidson Pfalzer (editor)
Potomac Indexing, LLC (index)
Nicole Abramowitz (copyedit)
Gilson Graphics (layout)

Janet Furlow (producer)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-68050-183-4

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—September 2016


https://pragprog.com
support@pragprog.com
rights@pragprog.com

Enter the Testing Pyramid

The testing pyramid, first coined by Mike Cohn in Succeeding with Agile

At the top of the pyramid, we've got these things called user interface or Ul
tests. These tests go end-to-end through the entire system and act just like
a user would if they were using the system. We’'ll cover Ul tests in Chapter
2, Smoking User Interface Tests, on page ?.

Then we've got integration tests. These are like Ul tests, except they don’t go
through the user interface. They instead go one layer beneath and directly
test the underlying services that make our user interfaces go. We cover these
in Chapter 4, Connecting the Dots with Integration Tests, on page ?.

Then at the base we've got these things called unit tests: small, fast, precise
code-level tests developers write to tell instantly when things are broken. These
come later, in [xxx](#unit).

Chapter Ordering

Now when it comes to exploring the pyramid, we're going to start at the top
with the Ul tests and then work our way down to the bottom. We're going to
do this for three reasons:

1. Quick wins.

Ul tests are the easiest of the three types of tests to get going with, and
scoring some quick wins will put some wind in our sails and make tackling
the subsequent chapters easier.

2. We need some basics.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/jrtest
http://forums.pragprog.com/forums/jrtest

°6

The chapter on JavaScript won't make sense until you understand a few
mechanics about how HTML and CSS work. So we are going to cover
those first in Chapter 2, Smoking User Interface Tests, on page ?.

3. Sticky learning.

Over the course of the book, I am going to occasionally lead you down
some garden paths and show you how some things seem great, only to
then show you where they fail. This will give you a better feel for what
each type of test can do, along with where their limits lie.

So don't think of the chapter ordering as showing the levels of impor-
tance—most teams start with unit tests first. But we are starting at the top
to aid with learning, which will hopefully make the material more sticky and
fun along the way.

Three Levels

The testing pyramid makes more sense once you understand that most web
software architectures are made up of three distinct layers.

Most soffware applications +5|>ico\“g have Hhvee lo\gws

Coxal]

U I Logic

There’s a Ul layer, which contains the buttons and controls your customers
use when using your application. There’s the service layer, which feeds your
Ul layer the data it needs to update its displays. And then there is the logic
layer, which contains the math, calculations, and brains of the operation.

Now of course not every application is built this way. Some have business logic
built into the service layer. Some applications don’t have any UI. These differ-
ences don’t usually matter. The fundamentals of the pyramid still tend to hold.

What matters is understanding that each layer of these applications maps to
a specific level in our pyramid, and that each level has a certain kind of test.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/jrtest
http://forums.pragprog.com/forums/jrtest

Ul Tests ® 7

Each [ayer maps to a layer of Hhe pyramid

[Sowar—]
ul

Let’s take a quick look at each of these layers now.

Ul Tests

The user interface tests test the application from the UI layer down.

[Soral_] > Ul Tests
_ Go end-to-end
U I Logic See what a user
would see
¥ Expensive & slow

This is what makes Ul tests so desirable. They cut through all the layers of
the architecture and ensure everything is hooked up. That’'s what we mean
when we say Ul tests go end-to-end.

The downside to this end-to-end awesomeness is speed and fragility. Ul tests
tend to be slow and fragile. Ul tests don’t have to be brittle (we’ll look at some
ways to make them more robust in Chapter 2, Smoking User Interface Tests,

of magnitude slower than unit tests. So they are not the greatest for giving
rapid feedback. This is why UI tests sit at the top of the pyramid and tend to
be used more sparingly on projects.

Integration Tests

Integration tests, on the other hand, don’t go through the UI. They start one
layer down and test the underlying services. This gives them the advantage
of not having to deal with the fragility of the Ul, while still retaining some of
the ability to check that things are properly hooked up and connected.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/jrtest
http://forums.pragprog.com/forums/jrtest

°8

¢ -
o (-(\ Integration Tests
) .
U I ( Service Logic Web services & APIs
=\ Connectivity
S % Not most precise

The only downside to integration tests is that they aren’t very precise. By
precise, I mean that while they are great at telling you something is broken,
they can’t always tell you exactly where.

So we like integration tests, because they are great at testing connectivity,
but we still don’t use them for everything because they can’t always tell us
exactly where our problems lie.

Unit Tests

For precision, speed, and coverage, we rely on unit tests. Unit tests are the
granddaddy of all automated tests. Developers started writing these things
years ago with the rise of agile methods like extreme programming,' and they
have become a staple in modern programming languages and platforms.

Coxal] .
Unit Tests
) . .
U I | Logic I Lightning fast
Extremely versatile
|_, ¥ Miss integrations

They are extremely quick and very precise. And when things break, they tell
us exactly where things went wrong. They are essential for rapid iterative
development, and without these, we would be flying blind.

The only downside to all that speed and precision is integration. Sometimes
unit tests miss things. Certain bugs only appear when we hook things up.
This is why integration tests are still so valuable. And why developers will
typically write both when testing their systems.

When we bring all these tests together, some rules of thumb start to form.

1. http://www.agilenutshell.com/xp

« Click HERE to purchase this book now. discuss


http://www.agilenutshell.com/xp
http://pragprog.com/titles/jrtest
http://forums.pragprog.com/forums/jrtest

Rules of Thumb * 9

Rules of Thumb
My,
<
=
)//\k\ i Climb as
necessary
Pﬁ

1. Favor unit tests over Ul Start here
2. Cover unit test gaps with integration tests.
3. Use Ul tests sparingly.

The pyramid takes its shape from experience, which has taught us that it is
better to do the bulk of our automated testing down near the bottom, where
the tests are fast and cheap, than at the top where they are slow and expensive.

Not all projects have or need end-to-end Ul-style tests. Some get by with just
unit and integration.

That’s why whenever we go and add new tests to the system, we always start
at the bottom first, and work our way up from there.

When adding a new test, always see if you can
cover it with a unit test first.

Now if you're a tester, this is hard advice to follow because you won’t be
automating things near the bottom. You will instead be working with the
higher-level tests closer to the top. So the flip side of this for you is to:

Always push tests as far down the pyramid as you can.

That means if you can handle a given test case with an integration test, that’s
favorable to trying to automate everything up in the UL

And this final rule of thumb takes a moment to say but a lifetime to master:

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/jrtest
http://forums.pragprog.com/forums/jrtest

°10

Don’t try to automate everything. Instead
automate just enough.

As wonderful as automated tests are, every test has a price in terms of cost
and maintenance. So we don’t want to automate everything. Instead we want
to automate just enough. Easy to say—hard to do. We will explore this Zen-
like principle more as we get further into the book.

HEy. IT'VE NOTICED SOME OF THE TESTS AT THE TOP
OVERLAP WITH THOSE NEAR THE BOTTOM. IS THAT OK 2

Some overlap of tests in terms of functionality is inevitable, because tests
near the top are always going to be supersets of those near the bottom.

Tests near Hhe fop wrap Hhose near Hhe boHom ...

Ul
Int

Unit

but H\eﬂ differ in fevms of scope and indent.

For example, we might have a unit test that verifies that passwords need to
be at least eight characters in length, while any UI test that logs in will inad-
vertently end up testing the same thing too. So there’s no avoiding that.

What we can avoid, however, is blatant duplication. We never want to write
the exact same tests between different layers of the pyramid because that

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/jrtest
http://forums.pragprog.com/forums/jrtest

Rules of Thumb ¢ 11

would be wasteful. If we know we've got some scenario covered at the unit
test level, there’s no sense in duplicating it directly up top in the UL

If it helps, think of the difference between Ul and unit tests like this.

Unit tests v Ul tests

are about development are about verification

rapid feedback slow feedback

very low level very high level

very local go end-to-end

cheap expensive
fast slow
solid fragile
reliable / deterministic flaky / non-deterministic
used to develop used to test
test from developer’s POV test from customer’s POV

UI and integration tests are about connectivity. It's OK for those tests to be
slower because they go through more layers of the architecture. That’s why
we love them! They are making sure things work end-to-end.

Unit tests, on the other hand, are about speed and feedback. We write unit
tests when we are looking for feedback about things that are important to us
during development. Things like:

e Did we get our design right?

e Did we break anything with the last set of changes?
e Do all our assumptions and edge cases check out?
e Is it safe to add new functionality?

Unit tests are what enable us to iterate quickly. UI and integration tests are
about making sure things work end-to-end. Both serve an important purpose.
They're just two different sides of the same coin.

So yes, some duplication in functionality is perfectly fine, just so long as we
are not duplicating intent.

And that’s basically it! That’s the pyramid. The rest of the book is just going
to focus on the details of where and when to write each of these tests, and
show you how they work in the real world for the web.

But that does leave us with one interesting question. If you are on a mixed
team made up of developers and testers, who exactly should be writing these
things?

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/jrtest
http://forums.pragprog.com/forums/jrtest



