
Extracted from:

The Way of the Web Tester
A Beginner’s Guide to Automating Tests

This PDF file contains pages extracted from The Way of the Web Tester, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2016 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

The Way of the Web Tester
A Beginner’s Guide to Automating Tests

Jonathan Rasmusson

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The yellow adhesive note graphic in Chapter 11 is designed by Layerace from Freepik.com.

The team that produced this book includes:

Susannah Davidson Pfalzer (editor)
Potomac Indexing, LLC (index)
Nicole Abramowitz (copyedit)
Gilson Graphics (layout)
Janet Furlow (producer)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-183-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—September 2016

https://pragprog.com
support@pragprog.com
rights@pragprog.com

The Importance of Style

def process(command)
 if command = "s"
 print "You’ve killed the Wumpus!"
 else if command = "r"
 print "Sir Robin bravely runs away."
end

It was a dark and stormy night.
The Wumpus is nearby!
Type ‘s’ to shoot your arrow
or ‘r’ to run away.

Just like in writing, style makes a big difference in the clarity of your program-
ming. Style is important because while computers run the programs, it’s
people like you and me who read and maintain them. So the clearer we can
make our code, the easier it’s going to be to modify, change, and support (not
to mention contain fewer bugs).

To help you with your style, we are going to look at three things programmers
constantly do to increase the quality of their code. Specifically, we are going
to look at naming, spacing, and removing duplication.

Naming
Names really matter in programming. When we get the name of something right,
understanding the program becomes a breeze. Get the name of something wrong,
however, and understanding even our own code can be a bit of a nightmare.

Take this little method. You gotta feel sorry for whoever’s responsible for maintain-
ing this. It’s not at all clear what the author was thinking when they wrote it.

 if (val(b))
 redirect :wlcm_pg
 else
 redirect :lgn_pg
 end

I have no idea!

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jrtest
http://forums.pragprog.com/forums/jrtest

Yet when we change a few words and rename a couple variables—bam! The
intent suddenly becomes clear.

I get it...

 if valid(password)
 redirect :welcome_page
 else
 redirect :login_page
 end

It’s hard to give super concrete advice on naming, because so much of what
makes a good name is contextual. The perfect word on one project can be
confusing and overloaded on another.

But here are some general guidelines to think about when choosing names.

s
red
60
nasa_aeronautics_space_administration

days
isNotValid

salary
brand_color
seconds_per_minute
nasa
workDays
isValid

Good Bad
Are easy to understand
Make intent clear
Explain
Aren’t too long
Are descriptive
Avoid double negatives

Good names...

It comes down to treating code like an author would treat the words and
paragraphs in a good short story. You want to be clear with what you are
saying, you want the program to be easy to read, and you don’t want to make
the reader work too hard to see and understand what it is you are doing.

And another element of style that can help with that is spacing.

Spacing
Spacing? That’s right. Believe it or not, how you space and indent your code
makes a big difference in its readability. Just like reading paragraphs in a book,
understanding code gets hard if things aren’t spaced and indented properly.

And it’s not just for readability that spacing matters. Some authors of languages
like Python and early versions of Fortran thought spacing was so important
that your program wouldn’t even run if you didn’t space things correctly!

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jrtest
http://forums.pragprog.com/forums/jrtest

Naming Conventions: Go with the Flow

Every computer language has a convention for how it likes people to name things.
Java, for example, uses a convention called CamelCase, where you alternate the
capitalization of the letters when combining words.

int highScore = 1000;
String firstName = "Steve";
float myBankAccountAfterComingBackFromVacation = 0.0;

Ruby uses CamelCase for defining classes, but when it comes to naming variables
and methods, the convention then is to separate them with underscores.

int max_number_of_songs_in_playlist = 1000
float currenct_exchange_rate = 2.4;
int average_age_of_hockey_player_in_nhl = 27

Whatever language you end up writing your automated tests in, it’s probably a good
idea if you stick with the coding convention for that language and go with the flow.
It will make your tests easier to read and will be less confusing to others following in
your footsteps.

 def display_high_score
 if (new_score > old_score)
 enter_initials
 else
 redirect :game_over
 end
 end

What the ...

 def display_high_score
 if (new_score > old_score)
 enter_initials
 else
 redirect :game_over
 end
 end

Ahh...

The other thing that helps with making your programs easier to understand
is grouping related things together.

• Click HERE to purchase this book now. discuss

Spacing • 7

http://pragprog.com/titles/jrtest
http://forums.pragprog.com/forums/jrtest

 def some_hard_to_read_test
 get new_password_reset_path
 assert_template 'password_resets/new'
 post password_resets_path, password_reset: { email: "" }
 assert_not flash.empty?
 assert_template 'password_resets/new'
 post password_resets_path, password_reset: { email: @user.email }
 assert_not flash.empty?
 assert_redirected_to root_url
 end

I know something important
is happening here ...

When you group related things together and add a little something we call
whitespace (blank lines between paragraphs of code), a big jumble of code can
suddenly become a lot clearer. Now when you read the code, you don’t have to
think as much. You can scan it at a glance and see instantly what’s going on.

 def a_nicely_spaced_test

 # Go to page
 get new_password_reset_path
 assert_template 'password_resets/new'

 # Try invalid email
 post password_resets_path, password_reset: { email: "" }
 assert_not flash.empty?
 assert_template 'password_resets/new'

 # Try valid email
 post password_resets_path, password_reset: { email: @user.email }
 assert_not flash.empty?
 assert_redirected_to root_url

 end

Of course! whitespace

comments are OK too!

what about comments ?
Someone told me I should try to write comment-free code ?

What did they mean by that ?

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jrtest
http://forums.pragprog.com/forums/jrtest

Comment-free code is a term developers use to challenge and remind them-
selves that the code they write should be so clear and easy to understand
that no comments are required. It should all just make sense.

While comment-free code is a nice goal and something we should all definitely
strive for, there is nothing wrong with dropping the occasional comment in
your code to clarify or explain your thinking.

What we want to avoid with comments is redundancy. If the code already
clearly explains what’s going on, no additional comments should be required.
But if there is some wrinkle, a hidden gotcha, or a non-obvious reason for
why something might happen in the code, a well-placed comment is perfectly
fine and desired.

Next let’s look at the root of all evil in software—duplication.

Dealing with Duplication

if (x)

if (x)

if (x)

Copy paste ...
Copy paste ...

Yes my pretty ...

 = Duplication =
Copying and pasting code is one of these double-edged swords in software.
On the one hand, it’s great for quickly getting things up and running. But on
the other hand, it makes our code more fragile and harder to change.

To see what I mean, take a look at the following test code. A common pattern
in testing is to get the first test working, and then copy and paste the same
code for the other test cases afterward, resulting in code that looks like this:

• Click HERE to purchase this book now. discuss

Dealing with Duplication • 9

http://pragprog.com/titles/jrtest
http://forums.pragprog.com/forums/jrtest

test 'can access welcome page' do
@user = users(:user1)
get login_path
post login_path, session: { email: 'user@test.com', password: 'password' }
follow_redirect!
assert_select 'h1', 'Welcome'

end

test 'can access company financials' do
@user = users(:user1)
get login_path
post login_path, session: { email: 'user@test.com', password: 'password' }
follow_redirect!
get financials_path
assert_select 'h1', 'Financials'

end

test 'can access plans for world domination' do
@user = users(:user1)
get login_path
post login_path, session: { email: 'user@test.com', password: 'password' }
follow_redirect!
get world_domination_path
assert_select 'h1', 'Step1: Take Saskatchewan'

end

The advantage of copying and pasting here is that it is simple and quick. We
get immediate feedback with regards to whether our tests are working. That
is good.

The downside of stopping here, however, is that if we ever decide to change
anything about how these tests work (like logging in with a new password),
we now need to do it in three places instead of one.

One way to clean this code up a bit would be to pull all the common code shared
between the methods into one setup method, and then call that setup method at
the beginning of each test. That code would look something like this:

def setup
@user = users(:user1)
get login_path
post login_path, session: { email: 'user@test.com', password: 'password' }
follow_redirect!

end

test 'can access welcome page' do
assert_select 'h1', 'Welcome'

end

test 'can access company financials' do
assert_select 'h1', 'Financials'

end

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jrtest
http://forums.pragprog.com/forums/jrtest

test 'can access plans for world domination' do
get world_domination_path
assert_select 'h1', 'Step1: Take Saskatchewan'

end

This is much cleaner, much simpler, and much easier to read. The reason
you don’t see setup being called directly from each method is that setup is a
special test method that automated testing frameworks support for doing this
sort of thing automatically for us. So in this case, we don’t need to call it
ourselves.

What we just did here (this small but important act of removing duplication),
developers call refactoring. In layman’s terms, refactoring is nothing more
than going back and cleaning your code up. It can include things like
renaming variables and picking better method names. But it usually boils
down to removing duplication and making the code easier to read.

We want to do these kinds of things when we are writing our tests. Any
duplication we see, we are going to want to pull out and get rid of. Doing so
will not only make our tests easier to read, it will also make them way easier
to change and understand.

Remove Duplication by Continuously Refactoring

Refactoring is the act of improving the design of your code without changing its
underlying functionality. That may sound a little weird, but it is an important part
of the programming processes.

You see, when we write code and tests, we are in two states of mind. One is to get
the test or piece of code working. But the other, often missed step, is to go back and
make sure that everything is as clean as possible, and that the code is as simple and
easy to read as possible.

That’s what refactoring is. It’s that critical step that prevents code from decaying over
time and collapsing under its own weight, and instead continuously improves it so
it remains a joy to work with.

To learn more about this technique and other ways to improve your software, check
out Martin Fowler’s book on the subject, Refactoring: Improving the Design of Existing
Code [FBBO99].

OK. Those are some basic techniques for writing good code. Let’s try them
out now and see what they look like in action.

• Click HERE to purchase this book now. discuss

Dealing with Duplication • 11

http://pragprog.com/titles/jrtest
http://forums.pragprog.com/forums/jrtest

