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In this chapter, we’re going to look at these small little tests developers write
called unit tests.

While this chapter is primarily focused on developers, it’s a worthwhile read
for testers too. Learning what goes on down at the base of the pyramid will
not only help testers spot potential gaps at the upper levels, it will also give
them great insight into where they should go with their exploratory testing.

Regardless of whether you are a developer or a tester, by the end of this
chapter, you will know what unit tests are, how to write them, and why they
form the base of our pyramid.

Everything Is Awesome!
Yeah! With our newfound UI testing superpowers, everything is suddenly
awesome! Not only can we write high-level smoke tests, but we can also write
UI tests for practically anything!

Need a smoke test? UI test.

Got a bug? UI test.

Need someone to fill out that pesky weekly timesheet? No problem—UI test
(yes, we actually did that).
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UI Tests
Every problem

Yes, to us the world’s problems can now all be solved with one more UI test,
and things are going great! Except…

The Challenge with UI Tests
Hey! Have you noticed that our build times have started to take off?

time

Build
time

secs

hours

LONGER BUILD TIMES

Huh! That’s strange. What used to take a couple of seconds and minutes now
takes tens of minutes and hours!

And what’s up with the state of our builds? Why have they all of a sudden
started to break?
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X XX XX XX
BROKEN BUILDS

Hmmmmm ....

Beats me! But all I know is with our builds taking longer, and the tests con-
stantly breaking, we are spending way more time fixing broken tests than
adding new features to our software.

I thought these automated test thingies were supposed to help!

This real-life story of teams simultaneously discovering the magic and pain
of going with lots of automated UI tests is unfortunately all too common.

It’s not that UI tests are bad. They are not. They are just not made for the
two things we crave above all else when doing rapid iterative development:
feedback and speed.

1ms100ms

Integration Unit UI 

1000ms

Tend to be slow
You see, UI tests are slow. Really slow. What takes milliseconds in a unit test
can take seconds in a UI test. And while that may not sound like a long time,
once you start to get a lot of these longer running tests, the cumulative time
can really start to add up.

Not only are UI tests slow, they have a reputation for being flaky and fragile.
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fill_in 'Name'

fill_in 'Address'

click_button 'Register'

Can be fragile

X

Flaky means they don’t always run reliably—sometimes they pass, sometimes
they fail (we will talk more about why later). But more than that, because UI
tests are so closely tied to the user interface, the smallest change in function-
ality can end up breaking a UI test, even though it looks like it had nothing
to do with it.

Finally, while UI tests are great at telling you that something’s wrong, they
are lousy at telling you where the problem is.

Integration?UI? Unit?

Aren’t very precise

I know there’s a bug in here somewhere ...

Hehe

Remember—these tests go end-to-end. So finding and fixing a bug can be a
lot like searching for a needle in a haystack.

Nope. As good and as cool as UI tests are, they alone are not enough. What
we need is another kind of test. Something that’s:

• Fast
• Cheap
• Precise
• Gives us rapid feedback
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Enter the Unit Test
Unit tests are small, method-level tests developers write to prove to themselves
their software works.

For example, say you were writing a program that could play blackjack, and
you wanted to verify that all newly shuffled decks contained fifty-two cards.
You could write a unit test for that. Something like this:

def test_full_deck
full_deck = Dealer.full_deck
assert_equal(52, full_deck.count)

end

Unlike UI and integration tests, unit tests are small and fast. They don’t go
end-to-end through all the layers of a system. They tend to be more local.
And it’s this smallness that makes them fast, focused, and easy to work with.
You can write a unit test for just about anything—like testing assumptions.

52 cardsNo Joker!

AKQJ1098765432 13 hearts, spades,
      diamonds, clubs

Great for testing assumptions
Assumptions get us all the time in software. Not anymore. With automated
unit tests, hidden assumptions can now be tested and verified, along with
business logic.
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Boom!

Calculations and business logic
Business logic can be complex. The rules we apply easily as humans all need
to be codified and somehow tested in the software. What better way to verify
we got the rules right than to code them up in the form of automated tests?

And when it comes to edge cases, unit tests have our backs there too.

if (salary < 100000)
 taxRate = 30%
else if (salary < 70000)
 taxRate = 20%

99,999?
100,000?

69,999?
70,000?

Edge cases and boundary conditions
Every time you can think of a new edge case, off-by-one error, or an error in
logic, you can write a unit test to confirm these things are working as expected.

For these reasons, unit tests have become an indispensable tool for writing
software today. This is why now every modern programming language has them.

101
011

Business logic

Program flow

Assumptions

Off-by-one errors

Edge cases

Permutations

Unit tests
for all your computing needs

Instant feedback!

100% Satisfaction! Guaranteed!
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OK. So that’s what unit tests are. Let’s now dig a little bit deeper and see how
these things work.
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