
Extracted from:

Using JRuby
Bringing Ruby to Java

This PDF file contains pages extracted from Using JRuby, published by the Pragmatic

Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

WHAT IS RAILS? 102

responding to the actions they perform. It consists of three parts:

ActionView and ActionController correspond to the View and Con-

troller parts of MVC, while ActionDispatch is responsible for con-

necting a request to a controller.

A controller in Rails is just a regular class that inherits from

ActionController; each public method is an action triggered by some-

thing the user does. ActionView is there in the background, but

your Ruby classes don’t interact directly with it. Views in Rails

are templates with names ending in .html.erb by default (the exact

suffix varies with the templating system).

ActionPack and ActiveRecord do most of the work in Rails.

ActiveSupport

Rails includes a large number of extensions to the Ruby core

classes. It also includes libraries to handle internationalized text,

helpers for working with times and dates, and lots of other things.

A lot of these smaller features aren’t necessarily tied to web devel-

opment. For example, date/time math crops up in a lot of appli-

cations, on the Web or elsewhere. With ActiveSupport, you can

express a time difference as easily as (2.months + 1.day + 3.hours +

15.minutes).ago. Compare that to old-school time arithmetic: Time.now

- (2*30*24*3600 + 24*3600 + 3*3600 + 15*60)—and that doesn’t even take

into account that different months have different lengths.

ActiveSupport is chock full of nice things like this. As you become

familiar with it, you’ll often find that some utility function you’ve

been wishing for is already included.

ActiveResource

In the bad old days, we tended to think of web apps as little com-

puter programs churning out HTML tag soup. You can write a

program like this with Rails, of course. But you’ll find it far eas-

ier to “cut with the grain” and think in terms of resources instead

of pages or scripts. This style is known as Representational State

Transfer (REST).

Rails makes it easy for you fit your app into this structure. Action-

Pack helps you create REST services, and ActiveResource helps

you consume them—both under similar APIs.

ActionMailer

ActionMailer is a small package that helps you create uniform mail

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/jruby

WHAT IS RAILS? 103

templates. You can send mail from your controllers and use .erb

files as templates for your messages.

ActiveModel

ActiveModel is a new component created in Rails 3 that is basi-

cally an extraction of the best bits of ActiveRecord, such as data

validations and callbacks. With ActiveModel, you can easily make

any Ruby object (not just database classes) at home in Rails.

Bundler

Although not part of Rails, Bundler is a utility developed in parallel

with the Rails 3 release to aid in gem dependency management in

any Ruby project (even a non-Rails one). Bundler locks down your

dependencies to make sure you can repeatably deploy the same

configuration across different environments and machines. You’ll

get comfortable with Bundler in the tutorial shortly.

Most parts of Rails work fine on their own, even in non-Rails applica-

tions. For instance, ActiveRecord is widely used in other frameworks

and applications. That said, some components are more reusable than

others.

There’s a lot functionality just in the Rails core. Thanks to the plug-

in architecture, there’s also a universe of extensions available to take

Rails in more directions (or sometimes fewer directions—the Rails team

will often spin off a seldom-used feature into a plug-in).

What About JRuby on Rails?

The previous sections described how Rails is put together, and we will

soon take a look at how to actually create an application using JRuby

on Rails. But first, why would you want to use JRuby together with

Rails? The short answer: for exactly the same reasons you would want

to use JRuby on any project—speed, stability, infrastructure, and so

on.

The slightly longer answer is that Rails in its current incarnation is

very good at many things but not absolutely everything. JRuby can

smooth over some of the remaining rough spots. Deployment is proba-

bly the most interesting of these. Deploying a Rails application is fairly

well documented, but getting everything right can still be difficult. With

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/jruby

WHAT IS RAILS? 104

Ian Says. . .

A First Look at REST

A RESTful web service provides a set of discoverable, uniquely
named documents (resources). Client code—which may or
may not be a browser—can read and modify resources by
using the HTTP protocol’s four simple verbs: POST, GET, PUT, and
DELETE.∗

For example, suppose you’re creating a photo-editing site.
With a traditional approach, you might send a GET request to
http://example.com/show.php to display an image or send POST
requests to new.php, edit.php, or delete.php to upload, modify, or
remove an image.

With REST, you’d present each photo as a resource with
a unique ID, such as http://example.com/photos/12345. All
operations—viewing, modifying, and so on—would take place
through GET, POST, PUT, and DELETE requests to that same
address.

Think of it as “convention over configuration” applied to your
API design.

∗. This is not the same thing as the four CRUD (create, read,
update, destroy) operations performed by many web apps; see
http://jcalcote.wordpress.com/2008/10/16/put-or-post-the-rest-of-the-story.

JRuby, you can package your Rails application as a standard .war file

and deploy it to any compliant Java web container.4

Rails supports several different databases, but in practice, most shops

use either MySQL or PostgreSQL. Since JRuby on Rails allows you to

use any database that has a JDBC driver, you have access to a wider

range of databases, plus features such as data sources and connec-

tion pooling. JRuby on Rails also works very well with JavaDB, the

in-memory database that is distributed with Java.

The best way to think of JRuby on Rails is like regular Rails with a few

intriguing new possibilities.

4. Web application archives, or .war files, are a standard way of deploying web applica-

tions on Java servers.

CLICK HERE to purchase this book now.

http://example.com/show.php
http://example.com/photos/12345
http://jcalcote.wordpress.com/2008/10/16/put-or-post-the-rest-of-the-story
http://www.pragprog.com/titles/jruby

GOING ROUGE 105

5.2 Going Rouge

It’s time to get started with some code. Through the rest of this chapter,

we’ll build Rouge, a simple web-based restaurant guide. By the time

we’ve finished, you should be able to build your own JRuby on Rails

application. We can’t cover all or even most of the functionality that

Rails provides—there are other books that can teach you this.5

Getting Started

Before starting the tutorial, we need to install Bundler and Rails. The

example code in this chapter was written using Rails 3.0.1, Bundler

1.0.2, and activerecord-jdbc-adapter 1.0.1.

To install Bundler and Rails, just type this command:

Download introduction_to_rails/output/gem-install.txt

$ jruby -S gem install bundler rails

Successfully installed bundler-1.0.2

Successfully installed activesupport-3.0.1

Successfully installed builder-2.1.2

Successfully installed i18n-0.4.1

Successfully installed activemodel-3.0.1

Successfully installed rack-1.2.1

Successfully installed rack-test-0.5.6

Successfully installed rack-mount-0.6.13

Successfully installed tzinfo-0.3.23

Successfully installed abstract-1.0.0

Successfully installed erubis-2.6.6

Successfully installed actionpack-3.0.1

Successfully installed arel-1.0.1

Successfully installed activerecord-3.0.1

Successfully installed activeresource-3.0.1

Successfully installed mime-types-1.16

Successfully installed polyglot-0.3.1

Successfully installed treetop-1.4.8

Successfully installed mail-2.2.7

Successfully installed actionmailer-3.0.1

Successfully installed rake-0.8.7

Successfully installed thor-0.14.3

Successfully installed railties-3.0.1

Successfully installed rails-3.0.1

24 gems installed

Our restaurant guide will make it easy for someone who’s considering a

restaurant to find reviews for it. They’ll want to search restaurants, read

5. See Agile Web Development with Rails [RTH08].

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/gem-install.txt
http://www.pragprog.com/titles/jruby

GOING ROUGE 106

reviews, and comment on either a review or a restaurant. Visitors will

be generating most of this content, but we’ll also need an administrator

account for creating restaurants. You’ll see later how to offer these two

different views of the same data.

Deciding on Our Models

From the previous short description, we can deduce some potential

models:

• Restaurant

• Administrator

• Reviewer

• Review

• Comment (attached to a Restaurant)

• Comment (attached to a Review)

We will use a common Comment model for both restaurant comments

and review comments—it seems unnecessary to have two different mod-

els for essentially the same idea.

Establishing Structure

Rails emphasizes a particular structure for your code. The first step in

creating a new application is to generate this structure. The rails new

command will build a minimal (but well-organized!) app from scratch,

using the directory name you provide on the command line. We’ll choose

the name rouge for our project directory.

Download introduction_to_rails/output/rails-rouge.txt

$ jruby -S rails new rouge --template http://jruby.org

create

create README

create Rakefile

create config.ru

create .gitignore

create Gemfile

create app

create app/controllers/application_controller.rb

create app/helpers/application_helper.rb

create app/views/layouts/application.html.erb

create app/mailers

create app/models

create config

create config/routes.rb

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/rails-rouge.txt
http://www.pragprog.com/titles/jruby

GOING ROUGE 107

Nick Says. . .

You Have Options

The rails new command supports a number of options. A cou-
ple of the more interesting ones are --database mysql for setting
up an application for use with MySQL, or --skip-active-record for
avoiding using ActiveRecord or databases at all. See jruby -S rails

help new for more information.

Rails tells you exactly which directories and files get created. Repro-

ducing the entire list here would take more than two pages; for the

trees’ sake, we’ve truncated the output. As you can see by the directory

names, there is one specific place for each piece of functionality you

would want to add to your application.

The directories you will spend most of your time in from now on are the

following:

• app: Contains most of the application’s functionality—models, con-

trollers, and views.

• config: Holds configuration settings, such as the database server

location.

• test: Go on, guess!

You’ll notice we passed an extra --template http://jruby.org option when

we generated the application. This flag tells Rails to apply some extra

JRuby-specific configuration to the new application.

If you are following along and ran the command yourself, you might

have noticed a couple of extra lines at the bottom of the rails new com-

mand output:

Download introduction_to_rails/output/rails-rouge.txt

apply http://jruby.org

apply http://jruby.org/templates/default.rb

gsub Gemfile

JRuby needs to use the activerecord-jdbc-adapter gem to connect to

databases via Java’s JDBC API, so JRuby has made some small mod-

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/rails-rouge.txt
http://www.pragprog.com/titles/jruby

GOING ROUGE 108

ifications to the default Rails application’s Gemfile. What goes in the

Gemfile, you say? We’re glad you asked!

Installing Dependencies with Bundler

Bundler’s stated goal is to “manage an application’s dependencies through

its entire life across many machines systematically and repeatably.”6

In more pragmatic terms, it helps prevent conflicting or missing gems.

Although you can use Bundler with any Ruby application, the integra-

tion story is particularly good with Rails 3.

As we hinted in the previous section, one of the files the rails new com-

mand creates is called Gemfile. Let’s take a look inside:

Download introduction_to_rails/output/Gemfile

source 'http://rubygems.org'

gem 'rails', '3.0.1'

Bundle edge Rails instead:

gem 'rails', :git => 'git://github.com/rails/rails.git'

if defined?(JRUBY_VERSION)

gem 'activerecord-jdbc-adapter'

gem 'jdbc-sqlite3', :require => false

else

gem 'sqlite3-ruby', :require => 'sqlite3'

end

The Gemfile is just a place to declare the gems and libraries your appli-

cation needs. Bundler shines when it’s time to configure those depen-

dencies at install time and runtime. To make Bundler install the depen-

dencies, run the bundle install command:

Download introduction_to_rails/output/bundle-install.txt

$ jruby -S bundle install

Fetching source index for http://rubygems.org/

Using rake (0.8.7)

Using abstract (1.0.0)

Using activesupport (3.0.1)

Using builder (2.1.2)

Using i18n (0.4.1)

Using activemodel (3.0.1)

Using erubis (2.6.6)

Using rack (1.2.1)

Using rack-mount (0.6.13)

6. http://gembundler.com/

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/Gemfile
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/bundle-install.txt
http://gembundler.com/
http://www.pragprog.com/titles/jruby

GOING ROUGE 109

Using rack-test (0.5.6)

Using tzinfo (0.3.23)

Using actionpack (3.0.1)

Using mime-types (1.16)

Using polyglot (0.3.1)

Using treetop (1.4.8)

Using mail (2.2.7)

Using actionmailer (3.0.1)

Using arel (1.0.1)

Using activerecord (3.0.1)

Installing activerecord-jdbc-adapter (1.0.1)

Using activeresource (3.0.1)

Using bundler (1.0.2)

Installing jdbc-sqlite3 (3.6.14.2.056)

Using thor (0.14.3)

Using railties (3.0.1)

Using rails (3.0.1)

Your bundle is complete! Use `bundle show [gemname]`

to see where a bundled gem is installed.

The beauty of having the dependencies stored in Gemfile is that you can

ensure that anyone else working on your application has the same set

of libraries. Everyone simply needs to remember to run bundle install (the

first time) or bundle update (when someone changes the Gemfile).

Configuring the Database

The next step after creating a new Rails application is to configure

your database. Open config/database.yml. It will consist of three sec-

tions named after the three standard environments Rails creates for

you: test, development, and production. Here’s the setup for the devel-

opment database, which is the one you’ll use during most of this chap-

ter:7

Download introduction_to_rails/rouge/config/database.yml

development:

adapter: sqlite3

database: db/development.sqlite3

pool: 5

timeout: 5000

If you were developing the application with a database server such

as MySQL or PostgreSQL, you’d edit this file to change the connec-

tion information. Since we’ll be using the embedded SQLite database,

there’s no need to change anything here for now.

7. Your automated tests will use the test database instead. It’s important to keep this

one separate, since Rails destroys and re-creates it every time you run the tests.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/rouge/config/database.yml
http://www.pragprog.com/titles/jruby

GOING ROUGE 110

Ola Says. . .

Whitespace in Config Files

Be very careful when editing YAML files (files that end in .yml

or .yaml)—one single tab character in these files will render
them unreadable to Ruby. If you see strange errors after edit-
ing database.yml, check your whitespace for tabs.

Before you start the application, we should point out there is another

step you’d need to perform had we started with MySQL: creating the

databases. Rails provides a handy command that will create a separate

database for each environment. As with many maintenance tasks, you

run it using Rake, the Ruby build and maintenance tool.8. This step is

unnecessary with SQLite, which will create the files for us the first time

our Rails app hits the database. If you’re really curious, you can safely

run the command anyway:

Download introduction_to_rails/output/rake-db-create.txt

$ jruby -S rake db:create:all

(in code/introduction_to_rails/rouge)

The Rails application is now ready to start:

Download introduction_to_rails/output/script-server.txt

$ jruby script/rails server

=> Booting WEBrick

=> Rails 3.0.1 application starting in development on http://0.0.0.0:3000

=> Call with -d to detach

=> Ctrl-C to shutdown server

[2010-10-15 11:08:40] INFO WEBrick 1.3.1

[2010-10-15 11:08:40] INFO ruby 1.8.7 (2010-10-13) [java]

[2010-10-15 11:08:40] INFO WEBrick::HTTPServer#start: pid=6137 port=3000

You should be able to visit http://localhost:3000 and see the standard

Rails welcome page.

8. We’ll cover Rake in more detail in Chapter 7, Building Software for Deployment, on

page 163.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/rake-db-create.txt
http://media.pragprog.com/titles/jruby/code/introduction_to_rails/output/script-server.txt
http://localhost:3000
http://www.pragprog.com/titles/jruby

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Home Page for Using JRuby

http://pragprog.com/titles/jruby

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/jruby.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/jruby
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/jruby
www.pragprog.com/catalog

