
www.princexml.com
This document was created with Prince, a great way of getting web content onto paper.

Working with Unix Processes

Copyright © 2012 Jesse Storimer. All rights reserved. This ebook is licensed for
individual use only.

This is a one-man operation, please respect the time and effort that went into this
book. If you came by a free copy and find it useful, you can compensate me at
http://workingwithunixprocesses.com.

AcknowledgementsAcknowledgements

A big thank you to a few awesome folks who read early drafts of the book, helped
me understand how to market this thing, gave me a push when I needed it, and
were all-around extremely helpful: Sam Storry, Jesse Kaunisviita, and Marc-André
Cournoyer.

I have to express my immense gratitude towards my wife and daughter for not only
supporting the erratic schedule that made this book possible, but also always being
there to provide a second opinion. Without your love and support I couldn't have
done this. You make it all worthwhile.

2

Chapter 17

Daemon Processes
Daemon processes are processes that run in the background, rather than under the
control of a user at a terminal. Common examples of daemon processes are things
like web servers, or database servers which will always be running in the
background in order to serve requests.

Daemon processes are also at the core of your operating system. There are many
processes that are constantly running in the background that keep your system
functioning normally. These are things like the window server on a GUI system,
printing services or audio services so that your speakers are always ready to play
that annoying 'ding' notification.

The First Process
There is one daemon process in particular that has special significance for your
operating system. We talked in a previous chapter about every process having a
parent process. Can that be true for all processes? What about the very first process
on the system?

This is a classic who-created-the-creator kind of problem, and it has a simple answer.
When the kernel is bootstrapped it spawns a process called the init process. This
process has a ppid of 0 and is the 'grandparent of all processes'. It's the first one and
it has no ancestor. Its pid is 1 .

90

Creating Your First Daemon Process
What do we need to get started? Not much. Any process can be made into a daemon
process.

Let's look to the rack project 1 for an example here. Rack ships with a rackup
command to serve applications using different rack supported web servers. Web
servers are a great example of a process that will never end; so long as your
application is active you'll need a server listening for connections.

The rackup command includes an option to daemonize the server and run it in the
background. Let's have a look at what that does.

Diving into Rack

def daemonize_app
if RUBY_VERSION < "1.9"
exit if fork
Process.setsid
exit if fork
Dir.chdir "/"
STDIN.reopen "/dev/null"
STDOUT.reopen "/dev/null", "a"
STDERR.reopen "/dev/null", "a"

else
Process.daemon

1.http://github.com/rack/rack

91

http://github.com/rack/rack

end
end

Lots going on here. Let's first jump to the else block. Ruby 1.9.x ships with a method
called Process.daemon that will daemonize the current process! How convenient!

But don't you want to know how it works under the hood? I knew ya did! The truth
is that if you look at the MRI source for Process.daemon 2 and stumble through the C
code it ends up doing the exact same thing that Rack does in the if block above.

So let's continue using that as an example. We'll break down the code line by line.

Daemonizing a Process, Step by Step

exit if fork

This line of code makes intelligent use of the return value of the fork method. Recall
from the forking chapter that fork returns twice, once in the parent process and once
in the child process. In the parent process it returns the child's pid and in the child
process it returns nil.

As always, the return value will be truth-y for the parent and false-y for the child.
This means that the parent process will exit, and as we know, orphaned child
processes carry on as normal.

2.https://github.com/ruby/ruby/blob/c852d76f46a68e28200f0c3f68c8c67879e79c86/process.c#L4817-4860

92

https://github.com/ruby/ruby/blob/c852d76f46a68e28200f0c3f68c8c67879e79c86/process.c#L4817-4860

If a process is orphaned then what happens when you ask for Process.ppid?

This is where knowledge of the init process becomes relevant. The ppid of
orphaned processes is always 1 . This is the only process that the kernel can be
sure is active at all times.

This first step is imperative when creating a daemon because it causes the terminal
that invoked this script to think the command is done, returning control to the
terminal and taking it out of the equation.

Process.setsid

Calling Process.setsid does three things:

1. The process becomes a session leader of a new session

2. The process becomes the process group leader of a new process group

3. The process has no controlling terminal

To understand exactly what effect these three things have we need to step out of the
context of our Rack example for a moment and look a little deeper.

93

Process Groups and Session Groups
Process groups and session groups are all about job control. By 'job control' I'm
referring to the way that processes are handled by the terminal.

We begin with process groups.

Each and every process belongs to a group, and each group has a unique integer id.
A process group is just a collection of related processes, typically a parent process
and its children. However you can also group your processes arbitrarily by setting
their group id using Process.setpgrp(new_group_id) .

Have a look at the output from the following snippet.

puts Process.getpgrp
puts Process.pid

If you ran that code in an irb session then those two values will be equal. Typically
the process group id will be the same as the pid of the process group leader. The
process group leader is the 'originating' process of a terminal command. ie. If you
start an irb process at the terminal it will become the group leader of a new process
group. Any child processes that it creates will be made part of the same process
group.

Try out the following example to see that process groups are inherited.

puts Process.pid
puts Process.getpgrp

94

fork {
puts Process.pid
puts Process.getpgrp

}

You can see that although the child process gets a unique pid it inherits the group id
from its parent. So these two processes are part of the same group.

You'll recall that we looked previously at Orphaned Processes. In that section I said
that child processes are not given special treatment by the kernel. Exit a parent
process and the child will continue on. This is the behaviour when a parent process
exits, but the behaviour is a bit different when the parent process is being controlled
by a terminal and is killed by a signal.

Consider for a moment: a Ruby script that shells out to a long-running shell
command, eg. a long backup script. What happens if you kill the Ruby script with a
Ctrl-C?

If you try this out you'll notice that the long-running backup script is not orphaned,
it does not continue on when its parent is killed. We haven't set up any code to
forward the signal from the parent to the child, so how is this done?

The terminal receives the signal and forwards it on to any process in the foreground
process group. In this case, both the Ruby script and the long-running shell
command would part of the same process group, so they would both be killed by
the same signal.

And then session groups...

95

A session group is one level of abstraction higher up, a collection of process groups.
Consider the following shell command:

git log | grep shipped | less

In this case each command will get its own process group, since each may be
creating child processes but none is a child process of another. Even though these
commands are not part of the same process group one Ctrl-C will kill them all.

These commands are part of the same session group. Each invocation from the shell
gets its own session group. An invocation may be a single command or a string of
commands joined by pipes.

Like in the above example, a session group may be attached to a terminal. It might
also not be attached to any terminal, as in the case of a daemon.

Again, your terminal handles session groups in a special way: sending a signal to the
session leader will forward that signal to all the process groups in that session,
which will forward it to all the processes in those process groups. Turtles all the way
down ;)

There is a system call for retrieving the current session group id, getsid(2), but
Ruby's core library has no interface to it. Using Process.setsid will return the id of
the new sesssion group it creates, you can store that if you need it.

So, getting back to our Rack example, in the first line a child process was forked and
the parent exited. The originating terminal recognized the exit and returned control
to the user, but the forked process still has the inherited group id and session id

96

from its parent. At the moment this forked process is neither a session leader nor a
group leader.

So the terminal still has a link to our forked process, if it were to send a signal to its
session group the forked process would receive it, but we want to be fully detached
from a terminal.

Process.setsid will make this forked process the leader of a new process group and
a new session group. Note that Process.setsid will fail in a process that is already a
process group leader, it can only be run from child processes.

This new session group does not have a controlling terminal, but technically one
could be assigned.

exit if fork

The forked process that had just become a process group and session group leader
forks again and then exits.

This newly forked process is no longer a process group leader nor a session leader.
Since the previous session leader had no controlling terminal, and this process is not
a session leader, it's guaranteed that this process can never have a controlling
terminal. Terminals can only be assigned to session leaders.

This dance ensures that our process is now fully detached from a controlling
terminal and will run to its completion.

Dir.chdir "/"

97

This changes the current working directory to the root directory for the system. This
isn't strictly necessary but it's an extra step to ensure that current working directory
of the daemon doesn't disappear during its execution.

This avoids problems where the directory that the daemon was started from gets
deleted or unmounted for any reason.

STDIN.reopen "/dev/null"
STDOUT.reopen "/dev/null", "a"
STDERR.reopen "/dev/null", "a"

This sets all of the standard streams to go to /dev/null , a.k.a. to be ignored. Since the
daemon is no longer attached to a terminal session these are of no use anyway. They
can't simply be closed because some programs expect them to always be available.
Redirecting them to /dev/null ensures that they're still available to the program but
have no effect.

In the Real World
As mentioned, the rackup command ships with a command line option for
daemonizing the process. Same goes with any of the popular Ruby web servers.

If you want to dig in to more internals of daemon processes you should look at the
daemons rubygem 3.

If you think you want to create a daemon process you should ask yourself one basic
question: Does this process need to stay responsive forever?

3.http://rubygems.org/gems/daemons

98

http://rubygems.org/gems/daemons

If the answer is no then you probably want to look at a cron job or background job
system. If the answer is yes, then you probably have a good candidate for a daemon
process.

System Calls
Ruby's Process.setsid maps to setsid(2), Process.getpgrp maps to getpgrp(2). Other
system calls mentioned in this chapter were covered in detail in previous chapters.

99

	Updates
	Introduction
	Primer
	Why Care?
	Harness the Power!
	Overview
	System Calls
	Nomenclature, wtf(2)
	Processes: The Atoms of Unix

	Processes Have IDs
	Cross Referencing
	In the Real World
	System Calls

	Processes Have Parents
	Cross Referencing
	In the Real World
	System Calls

	Processes Have File Descriptors
	Everything is a File
	Descriptors Represent Resources
	Standard Streams
	Limitations
	In the Real World
	System Calls

	Processes Have an Environment
	It's a hash, right?
	In the Real World
	System Calls

	Processes Have Arguments
	It's an Array!
	In the Real World

	Processes Have Names
	Naming Processes
	In the Real World

	Processes Have Exit Codes
	How to Exit a Process
	exit
	exit!
	abort
	raise

	Processes Can Fork
	Use the fork(2), Luke
	Multicore Programming?
	Using a Block
	In the Real World
	System Calls

	Orphaned Processes
	Out of Control
	Abandoned Children
	Managing Orphans

	Processes Are Friendly
	Being CoW Friendly
	MRI / RBX users

	Processes Can Wait
	Babysitting
	Process.wait and Cousins
	Communicating with Process.wait2
	Waiting for Specific Children
	Race Conditions
	In the Real World
	System Calls

	Zombie Processes
	Good Things Come to Those Who wait(2)
	What Do Zombies Look Like?
	In The Real World
	System Calls

	Processes Can Get Signals
	Trapping SIGCHLD
	SIGCHLD and Concurrency
	Signals Primer
	Where do Signals Come From?
	The Big Picture
	Redefining Signals
	Ignoring Signals
	Signal Handlers are Global
	Being Nice about Redefining Signals
	When Can't You Receive Signals?
	In the Real World
	System Calls

	Processes Can Communicate
	Our First Pipe
	Pipes Are One-Way Only
	Sharing Pipes
	Streams vs. Messages
	Remote IPC?
	In the Real World
	System Calls

	Daemon Processes
	The First Process
	Creating Your First Daemon Process
	Diving into Rack
	Daemonizing a Process, Step by Step
	Process Groups and Session Groups
	In the Real World
	System Calls

	Spawning Terminal Processes
	fork + exec
	Arguments to exec
	Kernel#system
	Kernel#`
	Process.spawn
	IO.popen
	open3

	In the Real World
	System Calls

	Ending
	Abstraction
	Communication
	Farewell, But Not Goodbye

	Appendix: How Resque Manages Processes
	The Architecture
	Forking for Memory Management
	Why Bother?
	Doesn't the GC clean up for us?

	Appendix: How Unicorn Reaps Worker Processes
	Reaping What?
	Conclusion

	Appendix: Preforking Servers
	1. Efficient use of memory
	Many Mongrels
	Many Unicorn
	2. Efficient load balancing
	3. Efficient sysadminning
	Basic Example of a Preforking Server

	Appendix: Spyglass
	Spyglass' Architecture
	Booting Spyglass
	Before a Request Arrives
	Connection is Made
	Things Get Quiet
	Getting Started

