
Extracted from:

Crafting Rails 4 Applications
Expert Practices for Everyday Rails Development

This PDF file contains pages extracted from Crafting Rails 4 Applications, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2013 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Crafting Rails 4 Applications
Expert Practices for Everyday Rails Development

Jose Valim

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-55-0
Encoded using the finest acid-free high-entropy binary digits.
Book version: B2.0—June 21, 2013

http://pragprog.com

To finish our tour of the Rails rendering stack, let’s look at how templates
are compiled and rendered by Rails. So far, we learned that a controller’s
responsibility is to normalize the rendering options and send them to the view
renderer. Based on these options, the view renderer asks the lookup context
to search for a specific template in the available resolvers, also taking into
account the locale and format values hold by the lookup context.

As we saw in Writing the Code, on page ?, the resolver returns instances of
ActionView::Template, and at the moment those instances are initialized, we need
to pass along an object called handler as argument. Each extension, such as
.erb or .haml, has its own template handler:

ActionView::Template.registered_template_handler("erb")
#=> #<ActionView::Template::Handlers::ERB:0x007fc722516490>

The responsibility of the template handler in the rendering stack is to compile
a template to Ruby source code. This source code is finally executed inside
the view context, returning the rendered template. Figure 8, Objects involved
in the rendering stack, on page 6 summarizes this process:

In order to understand how a template handler really works, we will build a
template handler to solve a particular issue. Even though the foundation for
today’s emails was created in 1970 and version 4 of the HTML specification
dates from 1997, we still cannot rely on sending HTML emails to everyone
since many email clients cannot render these properly.

This implies that whenever we configure an application to send an HTML
email, we should also send a TEXT version of the same, creating the so-called
multipart email. If the email’s recipient uses a client that cannot read HTML,
it will fall back to the TEXT part.

While Action Mailer makes creating multipart emails a breeze, the only issue
with this approach is that we have to maintain two versions of the same email
message. Wouldn’t it be nice if we actually have one template that could be
rendered both as TEXT and as HTML?

Here’s where Markdown comes in. Markdown1 is a lightweight markup lan-
guage, created by John Gruber and Aaron Swartz, that is intended to be as
easy to read and easy to write as possible. Markdown’s syntax consists
entirely of punctuation characters and allows you to embed custom HTML
whenever required. Here’s an example of Markdown text:

Welcome
=======

1. http://daringfireball.net/projects/markdown

• Click HERE to purchase this book now. discuss

http://daringfireball.net/projects/markdown
http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

view_context

lookup_context

view_renderer

asks for
a template

returns a
template

render
template

rendered
template

3 6

910

1 request
controller

resolverasks for
a template
with given

format and locale

returns a
template4 5

2 render with
options

11 rendered
template12 response

handler

7 compile
template

8 compiled
template

Figure 8—Objects involved in the rendering stack

Hi, José Valim!

Thanks for choosing our product. Before you use it, you just need
to confirm your account by accessing the following link:

http://example.com/confirmation?token=ASDFGHJK

Remember, you have *7 days* to confirm it. For more information,
you can visit our [FAQ][1] or our [Customer Support page][2].

Regards,

The Team.

[1]: http://example.com/faq
[2]: http://example.com/customer

Indeed, it’s quite readable! The best part is that it can be transformed into
HTML, which is rendered as shown next:

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

Figure 9—HTML generated from a Markdown template

Our template handler is going to use Markdown’s features to generate both
TEXT and HTML views using just one template. The only issue with Markdown
is that it does not interpret Ruby code. To circumvent this, we must first
compile our templates with ERB and just then convert them using the
Markdown compiler.

At the end of this chapter, we will hook into Rails’ generators and configure
the mailer generator to use our new template handler by default.

4.1 Playing with the Template Handler API

To have an object compliant with the handler API, it just needs to respond to
the call() method. This method receives as an argument an instance of Action-
View::Template, which we introduced in Writing the Code, on page ?, and should
return a string containing valid Ruby code. The Ruby code returned by the
handler is then compiled into a method, so rendering a template is as simple
as invoking this compiled method.

Before diving into our Markdown + ERB handler, let’s create a few template
handlers to get acquainted with the API.

Ruby Template Handler

Our first template handler simply allows arbitrary Ruby code as a template.
This means the following template is valid:

body = ""

• Click HERE to purchase this book now. discuss

Playing with the Template Handler API • 7

http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

body << "This is my first "
body << content_tag(:b, "template handler")
body << "!"
body

To implement this, let’s craft a new plugin called handlers using rails plugin:

$ rails plugin new handlers

Next, let’s write a simple integration test for our template handler. Our goal
is to render a dummy template at test/dummy/app/views/handlers/rb_handler.html.rb:

handlers/1_first_handlers/test/dummy/app/views/handlers/rb_handler.html.rb
body = ""
body << "This is my first "
body << content_tag(:b, "template handler")
body << "!"
body

Our integration test will need routes and a controller to serve that template,
so let’s add them:

handlers/1_first_handlers/test/dummy/config/routes.rb
Dummy::Application.routes.draw do

get "/handlers/:action", to: "handlers"
end

handlers/1_first_handlers/test/dummy/app/controllers/handlers_controller.rb
class HandlersController < ApplicationController
end

Our integration test should make a request to the defined route at /han-
dlers/rb_handler and assert our template was properly rendered:

handlers/1_first_handlers/test/integration/rendering_test.rb
require "test_helper"

class RenderingTest < ActionDispatch::IntegrationTest
test ".rb template handler" do

get "/handlers/rb_handler"
expected = "This is my first template handler!"
assert_match expected, response.body

end
end

When we run the test suite, it fails because Rails still does not recognize the
.rb extension in templates. To register a new template handler, we invoke
ActionView::Template.register_template_handler() with two arguments: the template
extension and the handler object. Because the handler object is anything that
responds to call() and returns a String, we can implement our handler simply
using Ruby’s lambda:

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/test/dummy/app/views/handlers/rb_handler.html.rb
http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/test/dummy/config/routes.rb
http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/test/dummy/app/controllers/handlers_controller.rb
http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/test/integration/rendering_test.rb
http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

handlers/1_first_handlers/lib/handlers.rb
require "action_view/template"
ActionView::Template.register_template_handler :rb,

lambda { |template| template.source }
module Handlers
end

Run the test suite, and the test we just wrote now passes. Our lambda receives
as an argument an ActionView::Template instance. Since our template handler
needs to return a String with Ruby code and our template in the filesystem is
written in Ruby, we just need to return the template.source().

As Ruby symbols implement a to_proc() method and :source.to_proc is exactly the
same as lambda { |arg| arg.source }, we can make our template handler even
shorter:

ActionView::Template.register_template_handler :rb, :source.to_proc

String Template Handler

Our .rb template handler is quite simple but has limited usage. Rails views
usually have big chunks of static contents, and handling those in the Ruby
code would quickly become messy. That said, let’s implement another template
handler that is more suitable to handle static content but that still allows us
to embed Ruby code. Since strings in Ruby support interpolation, our next
template handler will be based on Ruby strings. Let’s add a sample template
to the dummy app:

handlers/1_first_handlers/test/dummy/app/views/handlers/string_handler.html.string
Congratulations! You just created another #{@what}!

Our new template uses string interpolation, and the interpolated Ruby code
references an instance variable named @what. Let’s define a new action with
this instance variable in our HandlersController to be used as a fixture by our
tests:

handlers/1_first_handlers/test/dummy/app/controllers/handlers_controller.rb
class HandlersController < ApplicationController

def string_handler
@what = "template handler"

end
end

And write a small test for it in our integration suite:

handlers/1_first_handlers/test/integration/rendering_test.rb
test ".string template handler" do

get "/handlers/string_handler"
expected = "Congratulations! You just created another template handler!"

• Click HERE to purchase this book now. discuss

Playing with the Template Handler API • 9

http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/lib/handlers.rb
http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/test/dummy/app/views/handlers/string_handler.html.string
http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/test/dummy/app/controllers/handlers_controller.rb
http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/test/integration/rendering_test.rb
http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

assert_match expected, response.body
end

To make our new test pass, let’s implement this new template handler, once
again in lib/handlers.rb, as follows:

handlers/1_first_handlers/lib/handlers.rb
ActionView::Template.register_template_handler :string,

lambda { |template| "%Q{#{template.source}}" }

Run the test suite, and our new test passes. Our template handler returns a
string created with the Ruby shortcut %Q{}, which is then compiled to a
method by Rails. When this method is invoked, the Ruby interpreter evaluates
the string and returns the interpolated result.

This template handler works fine for simple cases but has two major flaws:
adding the } character to the template causes syntax errors unless the char-
acter is escaped, and the block support is limited, because it needs to be
wrapped in the whole interpolation syntax. In other words, both of the following
examples are invalid:

This } causes a syntax error

#{2.times do}
This does not work as in ERB and is invalid

#{end}

So it is time to look at more robust template handlers.

4.2 Building a Template Handler with Markdown + ERB

Several gems can compile Markdown syntax to HTML. For our template
handler, let’s use RDiscount,2 which is a Ruby wrapper to the fast Markdown
compiler library called Discount, written in C.

Markdown Template Handler

We can create a template handler that compiles to Markdown in just a couple
lines of code. Let’s first add another test to our suite:

handlers/1_first_handlers/test/integration/rendering_test.rb
test ".md template handler" do

get "/handlers/rdiscount"
expected = "<p>RDiscount is cool and fast!</p>"
assert_match expected, response.body

end

And then let’s write our template in the filesystem:

2. https://github.com/rtomayko/rdiscount

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/lib/handlers.rb
http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/test/integration/rendering_test.rb
https://github.com/rtomayko/rdiscount
http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

handlers/1_first_handlers/test/dummy/app/views/handlers/rdiscount.html.md
RDiscount is *cool* and **fast**!

Note that our template uses .md as the extension for Markdown. Let’s register
it in Rails:

handlers/1_first_handlers/lib/handlers.rb
require "rdiscount"
ActionView::Template.register_template_handler :md,

lambda { |template| "RDiscount.new(#{template.source.inspect}).to_html" }

Since our template handler relies on RDiscount, let’s add it as a dependency
to our plugin and run bundle install just after:

handlers/1_first_handlers/handlers.gemspec
s.add_dependency "rdiscount", "~> 2.0.0"

When we run the test suite, our new test passes. While our Markdown tem-
plate handler works like a charm, it does not allow us to embed Ruby code,
so its usage becomes quite limited. To circumvent this limitation, we could
use the same technique we used in our .string template handler, but it also
has limitations on its own. Therefore, we are going to use ERB to embed Ruby
code in our Markdown template and create a new template handler named
.merb.

MERB Template Handler

First, let’s add an example of our new template handler to the filesystem. This
example should be inside our dummy app and will be used in our tests:

handlers/1_first_handlers/test/dummy/app/views/handlers/merb.html.merb
MERB template handler is **<%= %w(cool fast).to_sentence %>**!

And then let’s write a test that renders this template and check the desired
output:

handlers/1_first_handlers/test/integration/rendering_test.rb
test ".merb template handler" do

get "/handlers/merb"
expected = "<p>MERB template handler is cool and fast!</p>"
assert_match expected, response.body.strip

end

This time, to implement our template handler, we are not going to use a
lambda. Instead, let’s create a module that responds to call(), allowing us to
break our implementation into smaller methods. In order to compile to ERB,
we will simply use the ERB handler that ships with Rails, which can be
retrieved using the ActionView::Template.registered_template_handler() method, as we
did in Writing the Code, on page ?. Our .merb template handler is shown next:

• Click HERE to purchase this book now. discuss

Building a Template Handler with Markdown + ERB • 11

http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/test/dummy/app/views/handlers/rdiscount.html.md
http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/lib/handlers.rb
http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/handlers.gemspec
http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/test/dummy/app/views/handlers/merb.html.merb
http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/test/integration/rendering_test.rb
http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

handlers/1_first_handlers/lib/handlers.rb
module Handlers

module MERB
def self.erb_handler
@@erb_handler ||= ActionView::Template.registered_template_handler(:erb)

end

def self.call(template)
compiled_source = erb_handler.call(template)
"RDiscount.new(begin;#{compiled_source};end).to_html"

end
end

end

ActionView::Template.register_template_handler :merb, Handlers::MERB

The ERB handler compiles the template, and like any other template handler,
it returns a string with valid Ruby code. The result returned by this Ruby
code is a String containing Markdown syntax that is then converted to HTML
using RDiscount.

Finally, look how we wrapped the code returned by ERB in an inline begin/end
clause. This must be done inline, or it will mess up backtrace lines. For
instance, imagine the following template:

<% nil.this_method_does_not_exist! %>

This template is going to raise an error when rendered. However, consider
those two ways to compile the template:

RDiscount.new(begin
nil.this_method_does_not_exist!

end).to_html

RDiscount.new(begin;nil.this_method_does_not_exist!;end).to_html

In the first example, since we introduced new lines in the compiled template,
the exception backtrace would say the error happened in the second line of
the template, which would be misleading. Notice we also need to use begin/end
to wrap the code; otherwise, our handler would generate invalid Ruby code
when the template contains more than one Ruby expression. Let’s verify this
by trying the following sample code in irb:

puts(a=1;b=a+1) # => raises syntax error
puts(begin;a=1;b=a+1;end) # => prints 2 properly

The last line in our implementation registers our new handler, making all
tests pass. Our .merb template handler is already implemented, but it still
does not render both TEXT and HTML templates as described at the beginning

• 12

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jvrails2/code/handlers/1_first_handlers/lib/handlers.rb
http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

of this chapter, only the latter. We just need to make a couple changes to our
template handler in order to output different results depending on the template
format.

Multipart Emails

The best way to showcase the behavior we want to add to our template handler
is by using multipart emails in Action Mailer. So, let’s create a mailer inside
our dummy application to be used by our tests:

handlers/2_final/test/dummy/app/mailers/notifier.rb
class Notifier < ActionMailer::Base

def contact(recipient)
@recipient = recipient

mail(to: @recipient, from: "john.doe@example.com") do |format|
format.text
format.html

end
end

end

This code should look familiar; just like respond_to() in your controllers, you
can give a block to mail() to specify which templates to render. However in
controllers, Rails chooses only one template to render, while in mailers, the
block specifies several templates that are used to create a single multipart
email.

Our email has two parts, one in TEXT and another in HTML. Since both parts
will use the same template, let’s create a template inside our dummy app but
without adding a format to its filename:

handlers/2_final/test/dummy/app/views/notifier/contact.merb
Dual templates **rock**!

And let’s write a test for that using this mailer and view:

handlers/2_final/test/integration/rendering_test.rb
test "dual template with .merb" do

email = Notifier.contact("you@example.com")
assert_equal 2, email.parts.size
assert_equal "multipart/alternative", email.mime_type

assert_equal "text/plain", email.parts[0].mime_type
assert_equal "Dual templates **rock**!",

email.parts[0].body.encoded.strip

assert_equal "text/html", email.parts[1].mime_type
assert_equal "<p>Dual templates rock!</p>",

• Click HERE to purchase this book now. discuss

Building a Template Handler with Markdown + ERB • 13

http://media.pragprog.com/titles/jvrails2/code/handlers/2_final/test/dummy/app/mailers/notifier.rb
http://media.pragprog.com/titles/jvrails2/code/handlers/2_final/test/dummy/app/views/notifier/contact.merb
http://media.pragprog.com/titles/jvrails2/code/handlers/2_final/test/integration/rendering_test.rb
http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

email.parts[1].body.encoded.strip
end

The test asserts that our email has two parts. Since the TEXT part is an
alternative representation of the HTML part, the email should have a MIME
type equal to multipart/alternative, which is automatically set by Action Mailer.
The test then proceeds by checking the MIME type and body of each part.
The order of the parts is also important; if the parts were inverted, most clients
would simply ignore the HTML part, showing only TEXT.

When we run this test, it fails because our text/plain part contains HTML code
and not only TEXT. This is expected, since our template handler always
returns HTML code. To make it pass, we will need to slightly change the
implementation of Handlers::MERB.call() to consider the template.formats:

handlers/2_final/lib/handlers.rb
def self.call(template)

compiled_source = erb_handler.call(template)
if template.formats.include?(:html)

"RDiscount.new(begin;#{compiled_source};end).to_html"
else

compiled_source
end

end

We inspect template.formats and check whether it includes the :html format. If
so, we render the template as HTML; otherwise, we just return the code
compiled by ERB, resulting in a TEXT template written in Markdown syntax.
This allows us to send an email with both TEXT and HTML parts but using
just one template!

With this last change, our template handler does exactly what we planned at
the beginning of this chapter. Before we create generators for our new template
handler, let’s briefly discuss how template.formats is set.

Formats Lookup

In Writing the Code, on page ?, we discussed that the resolver is responsible
for giving the :format option to templates. The resolver looks at three places
to decide which format to use:

• If the template found has a valid format, it’s used. In templates placed in
the filesystem, the format is specified in the template filename, as in
index.html.erb.

• However, if the template found does not specify a format, the resolver
asks the template handler whether it has a default format.

• 14

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jvrails2/code/handlers/2_final/lib/handlers.rb
http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

• Finally, if the template handler has no preferred format, the resolver
should return the same formats used in the lookup.

Because our contact.merb template does not specify a format, the resolver tries
to retrieve the default format from our Handlers::MERB template handler. This
default format is retrieved through Handlers::MERB.default_format(), but since our
template handler does not respond to default_format(), the second step is also
skipped. So, the resolver last option is to return the format used in the lookup.
As we are using format.text and format.html methods, they automatically set the
formats in the lookup to, respectively, TEXT and HTML.

For instance, if we defined Handlers::MERB.default_format() in our implementation
to return :text or :html, our last test would fail. Our resolver would never reach
the third step and would always return a specific format in the second step.

4.3 Customizing Rails Generators

With our template handler in hand and rendering multipart emails, the final
step is to create a generator for our plugin. Our generator will hook into Rails’
mailer generator and configure it to create .merb templates instead .erb.

In general, Rails generators have a single responsibility and provide hooks
so other generators can do the remaining work. A quick look at the mailer
generator in the Rails source code reveals the hooks it provides:

• Click HERE to purchase this book now. discuss

Customizing Rails Generators • 15

http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

rails/railties/lib/rails/generators/rails/mailer/mailer_generator.rb
module Rails

module Generators
class MailerGenerator < NamedBase
source_root File.expand_path("../templates", __FILE__)

argument :actions, type: :array,
default: [], banner: "method method"

check_class_collision

def create_mailer_file
template "mailer.rb",

File.join("app/mailers", class_path, "#{file_name}.rb")
end

hook_for :template_engine, :test_framework
end

end
end

Although we are not familiar with the whole Generators API yet, we can see
that its main behavior is to copy a mailer template to app/mailers, which is
implemented in the create_mailer_file() method. Notice the mailer generator does
not say anything about the template engine or the test framework; it provides
only hooks. This allows other libraries like Haml and RSpec developers to
provide their own hooks, customizing the generation process.

The Active Model API and the decoupling in Rails generators are the major
keys to agnosticism in Rails. We have already discussed the former in Chapter
2, Building Models with Active Model, on page ?, and now we are going to
play with the latter.

The Structure of a Generator

To briefly describe how a generator works, let’s take a deeper look at the
Rails::Generators::MailerGenerator shown in code on page 16. The mailer generator
inherits from Rails::Generators::NamedBase. All generators that inherit from it expect
an argument called NAME to be given when the generator is invoked from the
command line. Let’s verify it by executing the following command inside a
Rails application:

$ rails g mailer --help
Usage:

rails generate mailer NAME [method method] [options]

Options:
-e, [--template-engine=NAME] # Template engine to be invoked

• 16

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jvrails2/code/rails/railties/lib/rails/generators/rails/mailer/mailer_generator.rb
http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

Default: erb
-t, [--test-framework=NAME] # Test framework to be invoked

Default: test_unit

Back to our generator code, the Rails::Generators::MailerGenerator class also defines
:actions as an argument, on line 6. Since a default value was provided (an
empty array), these actions are optional and appear between brackets in the
previous help message.

Next, we invoke the class_collisions_check() method, which verifies that the NAME
given to the generator is not already defined in our application. This is useful
since it raises an error if we try to define a mailer named, for instance, Object.

On the next lines, we define the create_mailer_file() method, reproduced here for
convenience:

def create_mailer_file
template "mailer.rb",

File.join("app/mailers", class_path, "#{file_name}.rb")
end

Rails generators work by invoking all public methods in the sequence they
are defined. This construction is interesting because it plays well with inher-
itance: if you have to extend the mailer generator to do some extra tasks, you
just need to inherit from it and define more public methods. Skipping a task
is a matter of undefining some method. Whenever your new generator is
invoked, it will first execute the inherited methods and then the new public
methods you defined. As with Rails controllers, you can expose or run actions
by accident by leaving a method declared as public.

The create_mailer_file() method invokes three methods: template(), class_path(), and
file_name(). The first one is a helper defined in Thor,3 which is the basis for
Rails generators, while the others are defined by Rails::Generators::NamedBase.

Thor has a module called Thor::Actions, which contains several methods to assist
in generating tasks. One of them is the previous template() method, which
accepts two arguments: a source file and a destination.

The template() method reads the source file in the filesystem, executes the
embedded Ruby code in it using ERB, and then copies the result to the given
destination. All ERB templates in Thor are evaluated in the generator context,
which means that instance variables defined in your generator are also
available in your templates, as well as protected/private methods.

3. https://github.com/wycats/thor

• Click HERE to purchase this book now. discuss

Customizing Rails Generators • 17

https://github.com/wycats/thor
http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

The values returned by the two other methods, class_path() and file_name(), are
inflected from the NAME given as an argument. To see all the defined methods
and what they return, let’s sneak a peek at the named_base_test.rb file in Rails’
source code:

rails/railties/test/generators/named_base_test.rb
def test_named_generator_attributes

g = generator ['admin/foo']
assert_name g, 'admin/foo', :name
assert_name g, %w(admin), :class_path
assert_name g, 'Admin::Foo', :class_name
assert_name g, 'admin/foo', :file_path
assert_name g, 'foo', :file_name
assert_name g, 'Foo', :human_name
assert_name g, 'foo', :singular_name
assert_name g, 'foos', :plural_name
assert_name g, 'admin.foo', :i18n_scope
assert_name g, 'admin_foos', :table_name

end

This test asserts that when admin/foo is given as NAME, as in rails g mailer admin/foo,
we can access all those methods, and each of them will return the respective
value given in the assertion.

Finally, the mailer generator provides two hooks: one for the template engine
and another for the test framework. Those hooks become options that can be
given through the command line as well. Summing it all up, the previous
generator accepts a range of arguments and options and could be invoked as
follows:

$ rails g mailer Notifier welcome contact --test-framework=rspec

Generators’ Hooks

We already know Rails generators provides hooks. However, when we ask to
use ERB as the template engine, how does the mailer generator know how to
find and use it? Generators’ hooks work thanks to a set of conventions. When
you pick a template engine named :erb, the Rails::Generators::MailerGenerator will
try to load one of the following three generators:

• Rails::Generators::ErbGenerator
• Erb::Generators::MailerGenerator
• ErbGenerator

And since all generators should be in the $LOAD_PATH, under the rails/generators
or the generators folder, finding these generators is as simple as trying to require
the following files:

• 18

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jvrails2/code/rails/railties/test/generators/named_base_test.rb
http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

• (rails/)generators/rails/erb/erb_generator
• (rails/)generators/rails/erb_generator
• (rails/)generators/erb/mailer/mailer_generator
• (rails/)generators/erb/mailer_generator
• (rails/)generators/erb/erb_generator
• (rails/)generators/erb_generator

If one of those generators is found, it is invoked with the same command-line
arguments given to the mailer generator. In this case, it defines an Erb::Gener-
ators::MailerGenerator, which we are going to discuss next.

Template Engine Hooks

Rails exposes three hooks for template engines: one for the controller, one
for the mailer, and one for the scaffold generators. The first two generate files
only if some actions are supplied on the command line, such as in rails g mailer
Notifier welcome contact or rails g controller Info about contact. For each action given, the
template engine should create a template for it.

On the other hand, the scaffold hook creates all views used in the scaffold:
index, edit, show, new and the _form partial.

The implementation of Erb::Generators::ControllerGenerator in Rails is:

rails/railties/lib/rails/generators/erb/controller/controller_generator.rb
require "rails/generators/erb"

module Erb
module Generators

class ControllerGenerator < Base
argument :actions, type: :array,

default: [], banner: "action action"

def copy_view_files
base_path = File.join("app/views", class_path, file_name)
empty_directory base_path

actions.each do |action|
@action = action
@path = File.join(base_path, filename_with_extensions(action))
template filename_with_extensions(:view), @path

end
end

end
end

end

• Click HERE to purchase this book now. discuss

Customizing Rails Generators • 19

http://media.pragprog.com/titles/jvrails2/code/rails/railties/lib/rails/generators/erb/controller/controller_generator.rb
http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

The only method we haven’t discussed yet is filename_with_extensions(), defined
in Erb::Generators::Base:

rails/railties/lib/rails/generators/erb.rb
require "rails/generators/named_base"

module Erb
module Generators

class Base < Rails::Generators::NamedBase
protected
def format

:html
end
def handler

:erb
end
def filename_with_extensions(name)

[name, format, handler].compact.join(".")
end

end
end

end

The Erb::Generators::ControllerGenerator creates a view file in app/views using the
configured format and handler for each action given. The template used to
create such views in the Rails source code looks like this:

rails/railties/lib/rails/generators/erb/controller/templates/view.html.erb
<h1><%= class_name %>#<%= @action %></h1>
<p>Find me in <%= @path %></p>

This, for rails g controller admin/foo bar, outputs the following in the file
app/views/admin/foo/bar.html.erb:

<h1>Admin::Foo#bar</h1>
<p>Find me in app/views/admin/foo/bar</p>

The Erb::Generators::MailerGenerator class simply inherits from the previous con-
troller generator and changes the default format to be :text, reusing the same
logic:

rails/railties/lib/rails/generators/erb/mailer/mailer_generator.rb
require "rails/generators/erb/controller/controller_generator"

module Erb
module Generators

class MailerGenerator < ControllerGenerator
protected

def format
:text

• 20

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jvrails2/code/rails/railties/lib/rails/generators/erb.rb
http://media.pragprog.com/titles/jvrails2/code/rails/railties/lib/rails/generators/erb/controller/templates/view.html.erb
http://media.pragprog.com/titles/jvrails2/code/rails/railties/lib/rails/generators/erb/mailer/mailer_generator.rb
http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

end
end

end
end

And the template created for mailers looks like this:

rails/railties/lib/rails/generators/erb/mailer/templates/view.text.erb
<%= class_name %>#<%= @action %>

<%%= @greeting %>, find me in app/views/<%= @path %>

If we take a glance at the ERB generator’s directory structure in the Rails
source code at the railties/lib directory; we can easily see which templates are
available, as in the following figure:

Figure 10—Structure for ERB generators

Therefore, if we want to completely replace ERB generators, we just need to
create those generators and templates. And since Rails generators play well
with inheritance, we can do that by inheriting from the respective ERB gener-
ator and overwriting a few configuration methods.

• Click HERE to purchase this book now. discuss

Customizing Rails Generators • 21

http://media.pragprog.com/titles/jvrails2/code/rails/railties/lib/rails/generators/erb/mailer/templates/view.text.erb
http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

Creating Our First Generator

All we need to do to implement our .merb mailer generator is inherit from
Erb::Generators::MailerGenerator and overwrite both format() and handler() methods
defined Erb::Generators::Base. Our generator implementation looks like this:

handlers/2_final/lib/generators/merb/mailer/mailer_generator.rb
require "rails/generators/erb/mailer/mailer_generator"

module Merb
module Generators

class MailerGenerator < Erb::Generators::MailerGenerator
source_root File.expand_path("../templates", __FILE__)

protected
def format

nil # Our templates have no format
end

def handler
:merb

end
end

end
end

Note that we need to invoke a method called source_root() at the class level to
tell Rails where to find the template used by our generator at lib/genera-
tors/merb/mailer/templates.

Since we chose nil as the format and :merb as the handler, let’s create our
template view.merb with the following content:

handlers/2_final/lib/generators/merb/mailer/templates/view.merb
<%= class_name %>#<%= @action %>

<%%= @greeting %>, find me in app/views/<%= @path %>

And that’s it. Our template has the same contents as in the ERB generator,
but you could modify it to include some Markdown by default. To try the
generator, let’s move to the dummy application inside our plugin at test/dummy
and invoke the following command:

$ rails g mailer Mailer contact welcome --template-engine=merb

The previous command creates a mailer named Mailer with two templates
named contact.merb and welcome.merb. The generator runs, showing us the follow-
ing output:

• 22

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jvrails2/code/handlers/2_final/lib/generators/merb/mailer/mailer_generator.rb
http://media.pragprog.com/titles/jvrails2/code/handlers/2_final/lib/generators/merb/mailer/templates/view.merb
http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

create app/mailers/mailer.rb
invoke merb
create app/views/mailer
create app/views/mailer/contact.merb
create app/views/mailer/welcome.merb

You can also configure your application at test/dummy/config/application.rb to use
the merb generator by default, by adding the following line:

config.generators.mailer template_engine: :merb

However, you may not want to add this line to each new application you start.
It would be nice if we could set this value as the default inside our plugin and
not always in the application. Rails allows us to do it with a Rails::Railtie. This
will be our last topic before we finish this chapter.

• Click HERE to purchase this book now. discuss

Customizing Rails Generators • 23

http://pragprog.com/titles/jvrails2
http://forums.pragprog.com/forums/jvrails2

