
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

CHAPTER 14

Node-Based Data Structures
For the next several chapters, we’re going to explore a variety of data structures
that all build upon a single concept—the node. As you’ll see shortly, nodes
are pieces of data that may be dispersed throughout the computer’s memory.
Node-based data structures offer new ways to organize and access data that
provide a number of major performance advantages.

In this chapter, we’ll explore the linked list, which is the simplest node-based
data structure and the foundation for future chapters. You’ll discover that
linked lists seem almost identical to arrays but come with their own set of trade-
offs in efficiency that can give us a performance boost for certain situations.

Linked Lists
Like an array, a linked list is a data structure that represents a list of items.
While on the surface arrays and linked lists look and act quite similarly, under
the hood there are big differences.

As mentioned in Chapter 1, Why Data Structures Matter, on page ?, memory
inside a computer can be visualized as a giant set of cells in which bits of
data are stored. You learned that when creating an array, your code finds a
contiguous group of empty cells in memory and designates them to store data
for your application, as shown on page 4.

You also saw that the computer has the ability to access any memory address
in one step and can use that power to also immediately access any index
within the array. If you wrote code that said, “Look up the value at index 4,”
your computer could locate that cell in a single step. Again, this is because
your program knows which memory address the array starts at—say, memory
address 1000—and therefore knows that if it wants to look up index 4, it
should simply jump to memory address 1004.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwjavascript
http://forums.pragprog.com/forums/jwjavascript

Linked lists, on the other hand, work differently. Instead of being a contiguous
block of memory, the data from linked lists can be scattered across different
cells throughout the computer’s memory.

Connected data that are dispersed throughout memory are known as nodes.
In a linked list, each node represents one item in the list. The big question,
then, is this: if the nodes are not next to each other in memory, how does the
computer know which nodes are part of the same linked list?

This is the key to the linked list: each node also comes with a little extra
information—namely, the memory address of the next node in the list.

This extra piece of data—this pointer to the next node’s memory address—is
known as a link. Here’s a visual depiction of a linked list:

In this example, we have a linked list that contains four pieces of data: "a",
"b", "c", and "d". However, it uses eight cells of memory to store this data,
because each node consists of two memory cells. The first cell holds the
actual data, while the second cell serves as a link that indicates where in

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwjavascript
http://forums.pragprog.com/forums/jwjavascript

memory the next node begins. The final node’s link contains null since the
linked list ends there.

A linked list’s first node is also referred to as its head, and its last node its
tail. We may use the terms head and first node interchangeably.

If the computer knows at which memory address the linked list begins, it has
all it needs to begin working with the list! Since each node contains a link to
the next node, all the computer needs to do is follow each link to string
together the entire list.

The fact that a linked list’s data can be spread throughout the computer’s
memory is a potential advantage it has over the array. An array, by contrast,
needs to find an entire block of contiguous cells to store its data, which can
get increasingly difficult as the array size grows. These details are managed
by your programming language under the hood, so you may not have to
worry about them. However, you’ll see shortly that there are more tangible
differences between linked lists and arrays that we can sink our teeth into.

Implementing a Linked List
Some programming languages, such as Java, come with linked lists built into
the language. Many languages don’t, but it’s fairly simple to implement them
on our own.

Let’s create our own linked list using JavaScript. We’ll use two classes to
implement this: Node and LinkedList. Let’s create the Node class first:

class Node {
constructor(data) {

this.data = data;
this.nextNode = null;

}
}

export default Node;

The Node class has two attributes: data contains the node’s primary value (for
example, the string "a"), while nextNode contains the link to the next node in
the list. We can use this class as follows:

const node1 = new Node('once');
const node2 = new Node('upon');
const node3 = new Node('a');
const node4 = new Node('time');

node1.nextNode = node2;
node2.nextNode = node3;
node3.nextNode = node4;

• Click HERE to purchase this book now. discuss

Implementing a Linked List • 5

http://pragprog.com/titles/jwjavascript
http://forums.pragprog.com/forums/jwjavascript

With this code, we’ve created a list of four nodes that serve as a list containing
the strings 'once', 'upon', 'a', and 'time'.

Note that in our implementation, the nextNode refers to another Node instance
rather than an actual memory address number. The effect, however, is the
same—the nodes are likely dispersed throughout the computer’s memory,
and yet we can use the nodes’ links to string the list together.

Going forward, then, we’re simply going to discuss each link as pointing to
another node rather than to a specific memory address. Accordingly, we’re
going to use simplified diagrams to depict linked lists, such as this one:

Each node in this diagram consists of two cells. The first cell contains the
node’s data, and the second cell points to the next node.

This reflects our implementation of the Node class. In it, the data method returns
the node’s data, while the nextNode method returns the next node in the list.
In this context, the nextNode method serves as the node’s link.

While we’ve been able to create this linked list with the Node class alone, we
still need an easy way to tell our program where the linked list begins. To do
this, we’ll create a LinkedList class in addition to our previous Node class. Here’s
the LinkedList class in its basic form:

import Node from './node.js';

class LinkedList {
constructor(firstNode=null) {

this.firstNode = firstNode;
}

}

Note that we import node at the beginning of our code, since we placed the
Node class in a separate file from this LinkedList class.

At this point, all a LinkedList instance does is keep track of the first node of
the list.

Previously we created a chain of nodes containing node1, node2, node3, and
node4. We can now use our LinkedList class to reference this list by writing the
following code:

const list = new LinkedList(node1);

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwjavascript
http://forums.pragprog.com/forums/jwjavascript

This list variable now acts as a handle on the linked list, as it’s an instance
of LinkedList that has access to the list’s first node.

An important point emerges: when dealing with a linked list, we have imme-
diate access only to its head. This is going to have serious ramifications, as
we’ll see shortly.

At first glance, though, linked lists and arrays are similar—they’re both just
lists of stuff. When we dig into the analysis, though, we’ll see some dramatic
differences in these two data structures’ performances! Let’s jump into the four
classic operations: reading, searching, insertion, and deletion.

• Click HERE to purchase this book now. discuss

Implementing a Linked List • 7

http://pragprog.com/titles/jwjavascript
http://forums.pragprog.com/forums/jwjavascript

