
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Big O: How Many Steps Relative to N Elements?
Big O achieves consistency by focusing on the number of steps an algorithm
takes, but in a specific way. Let’s start off by applying Big O to the algorithm of
linear search.

In a worst-case scenario, linear search will take as many steps as there are
elements in the array. As we’ve previously phrased it: for N elements in the
array, linear search can take up to N steps. The appropriate way to express
this in Big O notation is:

O(N)

Some pronounce this as “Big Oh of N.” Others call it “Order of N.” My personal
preference, however, is “Oh of N.”

Here’s what the notation means. It expresses the answer to what we’ll call
the key question. The key question is this: if there are N data elements, how
many steps will the algorithm take? Go ahead and read that sentence again.
Then, emblazon it on your forehead, as this is the definition of Big O notation
that we’ll be using throughout the rest of this book.

The answer to the key question lies within the parentheses of our Big O
expression. O(N) says that the answer to the key question is that the algorithm
will take N steps.

Let’s quickly review the thought process for expressing time complexity with
Big O notation, again using the example of linear search. First, we ask the
key question: if there are N data elements in an array, how many steps will
linear search take? Because the answer to this question is that linear search
will take N steps, we express this as O(N). For the record, an algorithm that
is O(N) is also known as having linear time.

Let’s contrast this with how Big O would express the efficiency of reading
from a standard array. As you learned in Chapter 1, Why Data Structures
Matter, on page ?, reading from an array takes just one step, no matter how
large the array is. To figure out how to express this in Big O terms, we’re
going to again ask the key question: if there are N data elements, how many
steps will reading from an array take? The answer is that reading takes just
one step. So we express this as O(1), which I pronounce “Oh of 1.”

O(1) is interesting, since although our key question revolves around N (“If
there are N data elements, how many steps will the algorithm take?”), the
answer has nothing to do with N. And that’s actually the whole point: no

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwjavascript
http://forums.pragprog.com/forums/jwjavascript

matter how many elements an array has, reading from the array always takes
one step.

And this is why O(1) is considered the “fastest” kind of algorithm. Even as
the data increases, an O(1) algorithm doesn’t take any additional steps. The
algorithm always takes a constant number of steps no matter what N is. In
fact, an O(1) algorithm can also be referred to as having constant time.

So, Where’s the Math?

As I mentioned earlier in this book, I’m taking an easy-to-understand approach to
the topic of Big O. That’s not the only way to do it; if you were to take a traditional
college course on algorithms, you’d probably be introduced to Big O from a mathe-
matical perspective. Big O is originally a concept from mathematics, and therefore,
it’s often described in mathematical terms. For example, one way of describing Big
O is that it describes the upper bound of the growth rate of a function, or that if a
function g(x) grows no faster than a function f(x), then g is said to be a member of
O(f). Depending on your mathematics background, that either makes sense or doesn’t
help very much. I’ve written this book so that you don’t need as much math to
understand the concept.

If you want to dig further into the math behind Big O, check out Introduction to
Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein (MIT Press, 2009) for a full mathematical explanation. Justin Abrahms also
provides a pretty good definition in his article: https://justin.abrah.ms/computer-science/under-
standing-big-o-formal-definition.html.

The Soul of Big O
Now that we’ve encountered O(N) and O(1), we begin to see that Big O notation
does more than simply describe the number of steps an algorithm takes, such
as with a hard number like 22 or 400. Rather, it’s an answer to that key
question on your forehead: if there are N data elements, how many steps will
the algorithm take?

While that key question is indeed the strict definition of Big O, there’s actually
more to Big O than meets the eye.

Let’s say we have an algorithm that always takes three steps no matter how
much data there is. That is, for N elements, the algorithm always takes three
steps. How would you express that in terms of Big O?

Based on everything you’ve learned up to this point, you’d probably say that
it’s O(3).

• 4

• Click HERE to purchase this book now. discuss

https://justin.abrah.ms/computer-science/understanding-big-o-formal-definition.html
https://justin.abrah.ms/computer-science/understanding-big-o-formal-definition.html
http://pragprog.com/titles/jwjavascript
http://forums.pragprog.com/forums/jwjavascript

However, it’s actually O(1). And that’s because of the next layer of understand-
ing Big O, which I will reveal now.

While Big O is an expression of the number of an algorithm’s steps relative
to N data elements, that alone misses the deeper why behind Big O, what I
dub the “soul of Big O.”

The soul of Big O is what Big O is truly concerned about: how will an algo-
rithm’s performance change as the data increases?

This is the soul of Big O. Big O doesn’t want to simply tell you how many
steps an algorithm takes. It wants to tell you the story of how the number of
steps increases as the data changes.

Viewed with this lens, we don’t care very much whether an algorithm is O(1) or
O(3). Because both algorithms are the type that aren’t affected by increased
data, as their number of steps remains constant, they’re essentially the same
kind of algorithm. They’re both algorithms whose steps remain constant irre-
spective of the data, and we don’t care to make a distinction between the two.

An algorithm that is O(N), on the other hand, is a different type of algorithm.
It’s an algorithm whose performance is affected as we increase the data. More
specifically, it’s the kind of algorithm whose steps increase in direct proportion
to the data as the data increases. This is the story O(N) tells. It tells you about
the proportional relationship between the data and the algorithm’s efficiency.
It describes exactly how the number of steps increases as the data increases.

Look at how these two types of algorithms are plotted on a graph:

Notice that O(N) makes a perfect diagonal line. This is because for every
additional piece of data, the algorithm takes one additional step. Accordingly,
the more data, the more steps the algorithm will take.

• Click HERE to purchase this book now. discuss

The Soul of Big O • 5

http://pragprog.com/titles/jwjavascript
http://forums.pragprog.com/forums/jwjavascript

Contrast this with O(1), which is a perfect horizontal line. No matter how
much data there is, the number of steps remains constant.

Deeper into the Soul of Big O
To see why the soul of Big O is so important, let’s go one level deeper. Say we
had an algorithm of constant time that always took 100 steps no matter how
much data there was. Would you consider that to be more or less performant
than an algorithm that is O(N)?

Take a look at the following graph:

As the graph depicts, for a data set that is fewer than 100 elements, an O(N)
algorithm takes fewer steps than the O(1) 100-step algorithm. At exactly 100
elements, the lines cross, meaning the two algorithms take the same number
of steps, namely 100. But here’s the key point: for all arrays greater than 100,
the O(N) algorithm takes more steps.

Because there will always be some amount of data at which the tides turn,
and O(N) takes more steps from that point until infinity, O(N) is considered
to be, on the whole, less efficient than O(1) no matter how many steps the
O(1) algorithm actually takes.

The same is true even for an O(1) algorithm that always takes one million
steps. As the data increases, there will inevitably reach a point at which O(N)
becomes less efficient than the O(1) algorithm and will remain so up toward
an infinite amount of data.

Same Algorithm, Different Scenarios
As you learned in the previous chapters, linear search isn’t always O(N). It’s
true that if the item we’re looking for is in the final cell of the array, it will
take N steps to find it. But when the item we’re searching for is found in the

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwjavascript
http://forums.pragprog.com/forums/jwjavascript

first cell of the array, linear search will find the item in just one step. So this
case of linear search would be described as O(1). If we were to describe the
efficiency of linear search in its totality, we’d say that linear search is O(1) in
a best-case scenario and O(N) in a worst-case scenario.

While Big O effectively describes both the best- and worst-case scenarios of
a given algorithm, Big O notation generally refers to the worst-case scenario
unless specified otherwise. This is why most references will describe linear
search as being O(N) even though it can be O(1) in a best-case scenario.

This is because a “pessimistic” approach can be a useful tool: knowing
exactly how inefficient an algorithm can get in a worst-case scenario prepares
us for the worst and may have a strong impact on our choices.

• Click HERE to purchase this book now. discuss

The Soul of Big O • 7

http://pragprog.com/titles/jwjavascript
http://forums.pragprog.com/forums/jwjavascript

