
Extracted from:

Node.js 8 the Right Way
Practical, Server-Side JavaScript That Scales

This PDF file contains pages extracted from Node.js 8 the Right Way, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Node.js 8 the Right Way
Practical, Server-Side JavaScript That Scales

Jim R. Wilson

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Indexing: Potomac Indexing, LLC
Copy Editor: Candace Cunningham
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-195-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

As a programmer, chances are you’ve had to access a filesystem at some
point: reading, writing, renaming, and deleting files. We’ll start our Node.js
journey in this familiar area, creating useful, asynchronous file utilities. Along
the way we’ll explore the following aspects of Node.js development:

Node.js Core
On the architecture front, you’ll see how the event loop shapes a program’s
flow. We’ll use Buffers for transporting data between Node.js’s JavaScript
engine and its native core, and we’ll use Node.js’s module system to bring
in core libraries.

Patterns
Inside our programs, we’ll use common Node.js patterns like callbacks
for handling asynchronous events. We’ll harness Node.js’s EventEmitter and
Stream classes to pipe data around.

JavaScriptisms
We’ll take a look at some JavaScript features and best practices such as
block scoping and arrow-function expressions.

Supporting Code
You’ll learn how to spawn and interact with child processes, capture their
output, and detect state changes.

We’ll begin by creating a tool that watches a file for changes. This’ll give you a
peek into how the event loop works while introducing Node.js’s filesystem APIs.

Programming for the Node.js Event Loop
Let’s get started by developing a couple of simple programs that watch files
for changes and read arguments from the command line. Even though they’re
short, these applications offer insights into Node.js’s event-based architecture.

Watching a File for Changes
Watching files for changes is a convenient problem to start with because it
demands asynchronous coding while demonstrating important Node.js con-
cepts. Taking action whenever a file changes is just plain useful in a number
of cases, ranging from automated deployments to running unit tests.

Open a terminal to begin. Create a new directory called filesystem and navigate
down into it.

$ mkdir filesystem
$ cd filesystem

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwnode2
http://forums.pragprog.com/forums/jwnode2

You’ll use this directory for all of the code examples in this chapter. Once
there, use the touch command to create a file called target.txt.

$ touch target.txt

If you’re in an environment that doesn’t have the touch command (like Win-
dows), you can alternatively echo something to write the file.

$ echo, > target.txt

This file will be the target for our watcher program. Now open your favorite
text editor and enter the following:

filesystem/watcher.js
'use strict';
const fs = require('fs');
fs.watch('target.txt', () => console.log('File changed!'));
console.log('Now watching target.txt for changes...');

Save this file as watcher.js in the filesystem directory alongside the target.txt file.
Although this is a short program, it deserves scrutiny since it takes advantage
of a number of JavaScript and Node.js features. Let’s step through it.

The program begins with the string 'use strict' at the top. This causes the pro-
gram to be executed in strict mode, a feature introduced in ECMAScript ver-
sion 5. Strict mode disables certain problematic JavaScript language features
and makes others throw exceptions. It’s always a good idea to use strict mode,
and we’ll use it throughout the book.

Next, notice the const keyword; this sets up fs to be a local variable with a
constant value. A variable declared with const must be assigned a value when
declared, and can never have anything assigned to it again (which would
cause a runtime error).

It might surprise you, but it turns out that most of the time, in most code,
variables don’t need to be reassigned, making const a good default choice for
declaring variables. The alternative to const is let, which we’ll discuss shortly.

The require() function pulls in a Node.js module and returns it. In our case,
we’re calling require('fs') to incorporate Node.js’s built-in filesystem module.1

In Node.js, a module is a self-contained bit of JavaScript that provides func-
tionality to be used elsewhere. The output of require() is usually a plain old
JavaScript object, but may also be a function. Modules can depend on other
modules, much like libraries in other programming environments, which
import or #include other libraries.

1. http://nodejs.org/api/fs.html

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jwnode2/code/filesystem/watcher.js
http://nodejs.org/api/fs.html
http://pragprog.com/titles/jwnode2
http://forums.pragprog.com/forums/jwnode2

Next we call the fs module’s watch() method, which takes a path to a file and
a callback function to invoke whenever the file changes. In JavaScript, func-
tions are first-class citizens. This means they can be assigned to variables
and passed as parameters to other functions. Take a close look at our callback
function:

() => console.log('File changed!')

This is an arrow-function expression, sometimes called a fat arrow function
or just an arrow function. The empty pair of parentheses () at the beginning
means this function expects no arguments. Then the body of the function
uses console.log() to echo a message to standard output.

Arrow functions are new in ECMAScript 2015 and you’ll be writing many
such functions throughout this book. Prior to the introduction of arrow
functions, you’d have supplied a callback using the more verbose function(){}
construction:

function() {
console.log('File changed!');

}

Aside from having a terser syntax than older function expressions, arrow
functions have another big advantage over their ancestral counterparts: they
do not create a new scope for this. Dealing with this has been a thorn in the
side of many JavaScript developers over the years, but thanks to arrow
functions, it’s no longer a major source of consternation. Just like const should
be your go-to means of declaring variables, arrow functions should be your
first choice in declaring function expressions (such as callbacks).

The last line of the program just informs you that everything is ready. Let’s
try it out! Return to the command line and launch the watcher program using
node, like so:

$ node watcher.js
Now watching target.txt for changes...

After the program starts, Node.js will patiently wait until the target file is
changed. To trigger a change, open another terminal to the same directory
and touch the file again. The terminal running watcher.js will output the string
File changed!, and then the program will go back to waiting.

If you see duplicate messages, particularly on Mac OS X or Windows, this is
not a bug in your code! There are a number of known issues around this,
and many have to do with how the operating system surfaces changes.

• Click HERE to purchase this book now. discuss

Programming for the Node.js Event Loop • 7

http://pragprog.com/titles/jwnode2
http://forums.pragprog.com/forums/jwnode2

Since you’ll be touching the target file a lot this chapter to trigger changes,
you might want to use the watch command to do this automatically:

$ watch -n 1 touch target.txt

This command will touch the target file once every second until you stop it.
If you’re on a system that doesn’t have the watch command, don’t worry. Any
means of writing to target.txt is fine.

Visualizing the Event Loop
The program we wrote in the last section is a good example of the Node.js
event loop at work. Recall the event-loop figure from How Node.js Applications
Work, on page ?. Our simple file-watcher program causes Node.js to go
through each of these steps, one by one.

To run the program, Node.js does the following:

• It loads the script, running all the way through to the last line, which
produces the Now watching message in the console.

• It sees that there’s more to do because of the call to fs.watch().

• It waits for something to happen—namely, for the fs module to observe a
change to the file.

• It executes our callback function when the change is detected.

• It determines that the program still has not finished, and resumes waiting.

In Node.js the event loop spins until there’s nothing left to do, there’s nothing
left to wait for, or the program exits by some other means. For example, if an
exception is thrown and not caught, the process will exit. We’ll look at how
this works next.

Reading Command-Line Arguments
Now let’s make our program more useful by taking in the file to watch as a
command-line argument. This will introduce the process global object and how
Node.js deals with exceptions.

Open your editor and enter this:

filesystem/watcher-argv.js
const fs = require('fs');
const filename = process.argv[2];
if (!filename) {

throw Error('A file to watch must be specified!');
}
fs.watch(filename, () => console.log(`File ${filename} changed!`));

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jwnode2/code/filesystem/watcher-argv.js
http://pragprog.com/titles/jwnode2
http://forums.pragprog.com/forums/jwnode2

console.log(`Now watching ${filename} for changes...`);

Save the file as watcher-argv.js and run it like so:

$ node watcher-argv.js target.txt
Now watching target.txt for changes...

You should see output and behavior that’s nearly identical to that of the first
watcher.js program. After outputting Now watching target.txt for changes... the
script will diligently wait for changes to the target file.

This program uses process.argv to access the incoming command-line arguments.
argv stands for argument vector; it’s an array containing node and the full path
to the watcher-argv.js as its first two elements. The third element (that is, at
index 2) is target.txt, the name of our target file.

Note the use of backtick characters (`) to mark the strings logged in this program:

`File ${filename} changed!`

These are called template strings. They can span multiple lines and they
support expression interpolation, meaning you can place an expression inside
of ${} and it will insert the stringified result.

If a target filename is not provided to watcher-argv.js, the program will throw an
exception. You see try that by simply omitting the target.txt parameter:

$ node watcher-argv.js
/full/path/to/script/watcher-argv.js:4

throw Error('A file to watch must be specified!');
^

Error: A file to watch must be specified!

Any unhandled exception thrown in Node.js will halt the process. The excep-
tion output shows the offending file and the line number and position of the
exception.

Processes are important in Node. It’s pretty common in Node.js development
to spawn separate processes as a way of breaking up work, rather than putting
everything into one big Node.js program. In the next section, you’ll learn how
to spawn a process in Node.

Spawning a Child Process
Let’s enhance our file-watching example program even further by having it
spawn a child process in response to a change. To do this, we’ll bring in
Node.js’s child-process module and dive into some Node.js patterns and classes.
You’ll also learn how to use streams to pipe data around.

• Click HERE to purchase this book now. discuss

Spawning a Child Process • 9

http://pragprog.com/titles/jwnode2
http://forums.pragprog.com/forums/jwnode2

To keep things simple, we’ll make our script invoke the ls command with the
-l and -h options. This will give us some information about the target file
whenever it changes. You can use the same technique to spawn other kinds
of processes, as well.

Open your editor and enter this:

filesystem/watcher-spawn.js
'use strict';
const fs = require('fs');
const spawn = require('child_process').spawn;
const filename = process.argv[2];

if (!filename) {
throw Error('A file to watch must be specified!');

}

fs.watch(filename, () => {
const ls = spawn('ls', ['-l', '-h', filename]);
ls.stdout.pipe(process.stdout);

});
console.log(`Now watching ${filename} for changes...`);

Save the file as watcher-spawn.js and run it with node as before:

$ node watcher-spawn.js target.txt
Now watching target.txt for changes...

If you go to a different console and touch the target file, your Node.js program
will produce something like this:

-rw-rw-r-- 1 jimbo jimbo 6 Dec 8 05:19 target.txt

The username, group, and other properties of the file will be different, but
the format should be the same.

Notice that we added a new require() at the beginning of the program. Calling
require('child_process') returns the child process module.2 We’re interested only
in the spawn() method, so we save that to a constant with the same name and
ignore the rest of the module.

spawn = require('child_process').spawn,

Remember, functions are first-class citizens in JavaScript, so we’re free to
assign them directly to variables like we did here.

Next, take a look at the callback function we passed to fs.watch():

() => {
const ls = spawn('ls', ['-l', '-h', filename]);

2. https://nodejs.org/api/child_process.html

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jwnode2/code/filesystem/watcher-spawn.js
https://nodejs.org/api/child_process.html
http://pragprog.com/titles/jwnode2
http://forums.pragprog.com/forums/jwnode2

ls.stdout.pipe(process.stdout);
}

Unlike the previous arrow-function expression, this one has a multiline body;
hence the opening and closing curly braces ({}).

The first parameter to spawn() is the name of the program we wish to execute;
in our case it’s ls. The second parameter is an array of command-line argu-
ments. It contains the flags and the target filename.

The object returned by spawn() is a ChildProcess. Its stdin, stdout, and stderr properties
are Streams that can be used to read or write data. We want to send the stan-
dard output from the child process directly to our own standard output stream.
This is what the pipe() method does.

Sometimes you’ll want to capture data from a stream, rather than just piping
it forward. Let’s see how to do that.

• Click HERE to purchase this book now. discuss

Spawning a Child Process • 11

http://pragprog.com/titles/jwnode2
http://forums.pragprog.com/forums/jwnode2

