The .

Halgggtggnmers

A Common-Sense
Guide to
Al Engineering

Build Production-Ready LLM Applications

Jay Wengrow
edited by Katharine Dvoralk

This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

You've seen how the agent loop can turn an LLM into a machine that solves
complex problems. However, you've also seen that an agent can present an
incredible number of failure modes. It may even seem that an agent has a
greater chance of failing than being successful! Although it helped to give the
model a specific plan, it would be nice if we can make an agent even more
dependable. In this chapter, you’ll learn a technique that will do just that.

Specifically, you’ll learn how to architect agentic workflows, which can reduce
much of the autonomy that can cause an LLM to go off the rails. We’'ll apply
these workflow techniques to the podcast-producing app we created in the
previous chapter, and watch how dependable the app becomes. While no Al
app is ever perfect, the agentic workflow approach definitely brings us closer
to agentic excellence.

Designing an LLM Assembly Line

With the agent loop from Constructing an Agent Loop, on page ?, we've
taken an LLM, given it tools, and told it, “GO!” Assuming that the agent has
the right tools to fulfill the user’s request, the agent will use the tools in the

right sequence to get the job done.
Or not.

Although there may be some way to use the tools in concert to accomplish
the task, the agent may follow some other, suboptimal approach. After all,
the agent is an SNWP, not a brilliant tactician.

You saw in Giving the Agent a Plan, on page ? how instructing the model to
follow a detalledplanhelpedforappsd651gned to accomplish one specific
kind of task, such as producing research-based podcasts. This helped signif-
icantly, since the agent no longer has to be a planner. Rather, it can just follow

the steps of the plan given to it by a brilliant tactician, you.

Even so, an agent can still mess up. Among other things, the LLM may not
always remember to follow the plan. However, there’s a way to tighten up our
agent further to make it more foolproof. And that is to build something called
an agentic worlkflow. This term has been popularized by LLM provider
Anthropic in a paper' on this topic, one well worth reading. Although agentic
workflows aren’t appropriate where an agent is intended to be multi-purpose,
if an agent is supposed to do just one thing (or a small set of very similar
things), agentic workflows are often the way to go.

1. https://www.anthropic.com/engineering/building-effective-agents

« Click HERE to purchase this book now. discuss

https://www.anthropic.com/engineering/building-effective-agents
http://pragprog.com/titles/jwpaieng
http://forums.pragprog.com/forums/jwpaieng

o4

You can think of an agentic workflow as being a kind of “assembly line” of
LLMs. One of the most valuable things about assembly lines in the physical
world is that each worker does one thing and does it really well.

We can extend this idea to agents as well. An agent that can do lots of things
usually doesn’t know how to do any of those things particularly well. It’s the
proverbial “jack of all trades but master of none.” But if we can take our task
and divide it up among numerous LLMs that each do one thing well, our task
can “flow” from model to model, with each one doing its special thing just
right.

Another great thing about assembly lines is that they follow a very specific
sequence, and it’s virtually impossible to do things out of order. For example,
a car will always have its doors put on before the car reaches the worker
tasked with painting the car. Similarly, with an LLM assembly line, we ensure
that the LLM charged with creating a podcast script gets the go-ahead to start
only after another LLM completed all the necessary research.

Let’s visualize what an agentic workflow can look like for the podcast-produc-
ing app we created in the previous chapter. As a reminder, here’s the general
plan we want our agent to follow:

1. Use the search_web tool to find URLs of web pages with relevant information.

2. Use the read_webpage tool to read each URL.

3. If there isn’'t enough material from these web pages to create a podcast
script of the desired length, go back to Step 1.

4. Once there’s enough material, use it to write a podcast script.

5. Use the create_audio tool to convert the script into an mp3 audio file.

With this plan in place, we can now update our agent’s code to follow an
assembly-line style workflow. There are many possible ways to structure this,
but I'll illustrate one particular approach. Following is an overview of how it
works, after which I'll walk through the code.

Let’s start with an overview diagram. LLMs are symbolized with rectangles,
while regular Python code is symbolized by ovals.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwpaieng
http://forums.pragprog.com/forums/jwpaieng

Intake

Asks user for podcast topic
and length

Generate Web Query

»
7| Formulates a web query to

search with Google

web query
Y

Designing an LLM Assembly Line ¢ 5

Agent
loop

¢ podcast description

earch _web: Perfom Google search using web query

ead_webpage: Read web page of

i
y

A

|
/

if not enough,
do more research

lr list of URLS

y web page text

Relevant Text Extractor

Extract web page text that
is relevant to podcast topic

v extracted text

;

each URL

———
ppend extracted text to

4

Sufficient Research?

Decides if we have enough
research for the podcast

Script Generator

y if enough research

> create_audio: Convert
Generates

podcast script podcast
script

Script to MP3

This workflow is an assembly line of LLMs and regular Python functions that
put together a beautiful, shiny podcast. This will become clearer once you
see the code itself, but it’s crucial to understand that the sequence of steps
is executed by regular, deterministic code. It’s just that some of the individual
steps happen to involve an LLM.

Here’s the gist of what happens at each step:

1.

The user interacts with the “Intake Assistant,” which also happens to be
the LLM of our main conversation loop. This LLM asks the user for their
podcast preferences, including the podcast topic and length. The user
may enter, as an example, a half-hour podcast explaining the physics and science of
rocket engines, explained to me like I'm five years old. This LLM also happens to run
an agent loop, but I'll talk about that more in a bit.

Once the Intake Assistant feels that it understands what the user wants,
it then sends the user’s podcast preferences to a second LLM, one that

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwpaieng
http://forums.pragprog.com/forums/jwpaieng

°6

specializes in generating web queries. This model decides, based on the
user’s chosen podcast topic, what appropriate query should be used to
search the web. For example, this model may generate a query of how
rocket engines work.

3. Next, our code calls the search_web Python function to search the web using

the web query provided by the LLM of the previous step. This pulls an

array of URLs.

Our code calls the read_webpage Python function on each URL.

5. Our code sends the text of each web page to an LLM dedicated to
extracting whatever text is relevant to the podcast.

6. This extracted text gets appended to a research array, which is simply a
repository that stores all relevant research we’ve found so far.

7. After completing the above loop, our code asks another LLM to decide if
the research array contains enough relevant material to fill a podcast of the
user’s desired length.

8. If this LLM decides that there is not enough research, our code goes back
to Step 2, proceeding once again to generate a new web query and perform
more web research.

>

9. Once it's decided that we do have enough research, our code asks yet
another LLM to write a podcast script based on the material in the research
array.

10. Finally, our code runs the create_audio Python function on the podcast script
to create the mp3 file.

If this still seems fuzzy, that’'s okay. The code that follows should clarify
everything.

Implementing an LLM Assembly Line

On that note, here’s the code for implementing the workflow for producing
podcasts. Beyond the main conversation loop itself, the initiate_podcast function
is what carries out the entire sequence of assembly line steps. The functions
for the individual steps appear first, followed by the initiate podcast function,
followed by the main conversation loop:

agentic_systems/chatbot.py

import os

import json

from dotenv import load dotenv

from openai import OpenAI

from 1lm_tools import read webpage, search web, create audio
import requests

from bs4 import BeautifulSoup

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/jwpaieng/code/agentic_systems%2Fchatbot.py
http://pragprog.com/titles/jwpaieng
http://forums.pragprog.com/forums/jwpaieng

Implementing an LLM Assembly Line ® 7

load dotenv()

1lm = OpenAI()

google api key = os.getenv("GOOGLE API KEY")
search engine id = os.getenv("SEARCH ENGINE ID")

research = []
previous web queries = []

def 1lm_response(prompt, tools):
response = llm.responses.create(
model="gpt-5-mini",
tools=tools,
input=prompt
)

return response

def generate_web_query(podcast description):
web query = llm.responses.create(
model="gpt-5-mini",
input=f"""You are doing research for a podcast, whose details are:
<details>{podcast description}</details> Generate a Google web
search query to help do research for this podcast.

<instructions>
Ensure that your web search query is different than any of the past
queries made: <old query list>{previous web queries}</old query list>.
The web search query should be specific and succinct, no more than 6
words. For example, if the podcast topic is about the public
reception of ChatGPT 5, your query would be simply: public reception
of ChatGPT 5
</instructions>

Generate the web query now:

)

Save web query in global previous web queries variable so we don't
ever repeat the same search again:

previous web queries.append(web query.output text)

return web query.output text

def extract_text(urls, podcast description):
for url in urls:

webpage text = read webpage(url)

extracted text = llm.responses.create(
model="gpt-5-mini",
input=f"""You are doing research for a podcast, whose details
are: <details>{podcast description}</details>
Extract whatever relevant information you can from this info
you've found on the web: <webpage>{webpage text}</webpage>.
Just include the extracted text and nothing else in your
response. Generate the extracted text now:"""

)

research.append(extracted_text.output_ text)

def has_sufficient_research(podcast description):

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwpaieng
http://forums.pragprog.com/forums/jwpaieng

*8

sufficient research = 1lm.responses.create(
model="gpt-5-mini",
input=f"""You are doing research for a podcast, whose details are:
<details>{podcast description}</details>. Here is the research you
have from the web so far: <research>{research}</research>. Do you
feel that you have enough info to create a fact-based podcast
based on this research with the information you have so far?
Keep in mind the desired length of the podcast.
Respond with either: True/False

)

return sufficient research.output text

def write_podcast_script(podcast description):
script = 1lm.responses.create(

model="gpt-5-mini",
input=f"""You are a podcast scriptwriter, creating scripts for
news-based and explainer podcasts. The podcast should be based on
real facts and web research. As such, do not create any fictional
information for the podcast. Only use what you find based on your
web research.

Here are the details of what the podcast should be:
<details>{podcast description}</details> Here is the research you
should use to produce the script: <research>{research}</research>

The script is read by a single host in a news-like style. Do not
create music or the like. Only create the words to be spoken by
the host. Create the script now:"""

)

return script.output_text

def initiate_podcast(podcast description):
Generate a web query based on podcast description:
web query = generate web query(podcast description)
Peform a Google search based on the web query:
urls = search web(web query)

Read each url's web page and extract relevant text, storing
it in the global variable called research:
extract text(urls, podcast description)

Check whether we have enough research to create podcast:

if has sufficient research(podcast description) == "False":
If not enough research, we recursively call initiate podcast
to continue research:
initiate podcast(podcast description)

Write podcast script based on research:

podcast script = write podcast script(podcast description)
Convert podcast script to mp3:

create audio(podcast script)

return True

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwpaieng
http://forums.pragprog.com/forums/jwpaieng

Implementing an LLM Assembly Line ® 9

TOOLS = [
{
"type": "function",
"name": "initiate podcast",
"description": """Generates an audio podcast as a file

called podcast.mp3""",
"parameters": {
"type": "object",
"properties": {
"podcast description": {
"type": "string",
"description": """A description of what type of podcast
the user wishes to create, including
topic and length""",

I
"required": ["podcast description"],
+
+
]

TOOL_FUNCTIONS = {"initiate podcast": initiate podcast}

print(f"Assistant: What podcast would you like me to create?\n")

user _input = input("User: ")

history = [
{"role": "developer", "content": """You are a podcast producer, creating
news-based and explainer podcasts for people on any topic they choose.

Here is the plan you should follow step by step to create a podcast:
<plan>

1. When the user describes the podcast they want, do not proceed to the
next step until you've obtained the following information:

* The topic of the podcast.

* How long the podcast should be. (For example, five minutes long.)
However, do not ask the user about the podcast style. Assume that the
podcast style is a single host reporting news and insight.

2. Next, create a simple summary describing the type of podcast the user
wants. Ensure that this summary includes the desired time length of the
podcast. For example, the summary might be: "A 3-minute podcast on the
latest news, insights, and updates in the field of quantum physics"

3. You have access to an initiate podcast tool. Your next step is

to call the initiate podcast tool, passing along your summary to it.

</plan>

{"role": "assistant", "content": "How can I help you today?"}
]
while user input != "exit": # Main conversation loop

history += [{"role": "user", "content": user input}]

while True: ## the "agent loop"
response = llm _response(history, TOOLS)

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwpaieng
http://forums.pragprog.com/forums/jwpaieng

°10

history += response.output
tool calls = [obj for obj in response.output \
if getattr(obj, "type", None) == "function call"]

if not tool calls:
break # exit loop when there are no tool calls

for tool call in tool calls:
function_name = tool_call.name
args = json.loads(tool call.arguments)

function = TOOL FUNCTIONS.get(function name)
result = {function name: function(**args)}

history += [{"type": "function call output",
"call id": tool call.call id,
"output": json.dumps(result)}]

print(f"\nAssistant: {response.output text}\n")

history += [
{"role": "assistant", "content": response.output text},

]

user_input = input("User: ")

We've got more code here than usual, but it's surprisingly straightforward.
Let’s start our analysis with the main conversation loop, which is toward the
end of the file.

The main conversation loop serves primarily as our Intake Assistant, which
asks the user what kind of podcast they wish to create. Specifically, it wants
to learn the user’s desired podcast topic and length. Once the Intake LLM
knows what the user wants, it writes up these preferences as a short summa-
ry, and then calls the initiate_podcast function, passing along the summary to
it as an argument. This initiate_podcast function, in turn, kicks off an LLM
assembly line that puts a podcast together.

Before moving on to inspect the initiate_podcast function itself, note that the
Intake Assistant runs a classic agent loop. This might be more than is needed
for an LLM that has only one tool that will likely not be called consecutively.
(At least, it shouldn’t.) However, we kept the classic agent loop to allow this
LLM to handle additional tools should we decide to add them at some point.
Also note that this is the only step in our entire workflow in which an LLM
uses a tool.

The initiate_podcast function lays out the LLM assembly line, working step by
step to put together all the pieces of a great podcast. It does this by calling
other Python functions in a very precise sequence, using good old-fashioned
deterministic code.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwpaieng
http://forums.pragprog.com/forums/jwpaieng

Implementing an LLM Assembly Line ® 11

This is the key to ensuring that our app follows the intended plan. Although
the assembly line incorporates LLMs at various points, the overarching plan
is driven by standard Python code—and this code is deterministic. This
determinism is exactly what gives agentic workflows their reliability. In gen-
eral, the more we can take nondeterministic pieces of our app and make them
deterministic, the better.

Read through the initiate_podcast function to see just how the assembly line
works. The assembly line is a sequence of functions, some of which use LLMs,
and some that are just plain Python.

I'd like to highlight some noteworthy points about some of these functions.

First, our code handles with two global variables—research and previ-
ous_web_queries—which are initialized as empty arrays toward the top of our
code. The research array stores all relevant web text we find through our web
searches, and the previous_web_queries array stores each Google search query
we use to ensure we never use the same search query twice.

The generate_web_query uses an LLM to generate the ideal web search query
based on the podcast topic. I wasn’t happy with the queries that our agent
was generating in our previous chapter’s implementation, so I've used some
prompt engineering to help the model craft better queries. Note how we ensure
that the model doesn’t repeat any previously used web query.

This LLM, and those that follow, are all “specialization LLMs” in that they
have one single task. As with a real assembly line, this helps ensure that they
do their job well. Of course, we can increase the performance of each special-
ization LLM with good prompt engineering.

The extract_text function also uses a specialization LLM, which extracts podcast-
relevant text from a web page’s text.

The has_sufficient_research function likewise has a single-minded focus, which is
to determine whether our research contains enough relevant material for the
podcast based on the user’s desired length. Note that the output of this LLM,
as with all standard LLM output text, will be a string of "True" or "False", rather
than an actual boolean object.

Hopping back to initiate_podcast, you'll see that if the has_sufficient_research LLM
determines that we do not have enough research, we rerun previous steps to
perform further research. This is akin to a physical assembly line, where there
may be an inspector at some point who checks the product’s quality. If the
inspector decides that something is lacking, they’ll send the product back to
some earlier step in the assembly line.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwpaieng
http://forums.pragprog.com/forums/jwpaieng

°12

When enough research is finally accumulated, the write_podcast script uses
another specialization LLM to write a great podcast script. And then, the cre-
ate_audio function turns the script into a beautifully narrated podcast that you
can listen to on the go. After that, the intake LLM takes over again in case
the user wants to create another podcast.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwpaieng
http://forums.pragprog.com/forums/jwpaieng

