
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

CHAPTER 6

Augmenting a Prompt with Knowledge
AI-based customer support representatives have been around for a little while
now, but they can be annoying to deal with, to say the least. (Press 9 to hear
this entire menu again!) With the advent of powerful LLMs, though, it’s possible
to build customer support functionality that is actually helpful, perhaps even
to the point where it seems like you’re interacting with a real human.

For the remainder of this book, we’re going to work on building such a cus-
tomer support bot. While this app provides support to customers of a fictional
company, you can absolutely apply these same ideas and techniques to the
real world. In this chapter, I first explain the nature of the project and the
unique challenges we’re up against. I then introduce you to the notion of
augmenting prompts with knowledge, a central idea in AI engineering.

So, let’s roll up our sleeves; we have an app to build.

Building a Chatbot
A primary function of our customer support bot will be to serve as an AI-
powered “knowledge chatbot,” one that allows a user to ask for information
about an organization’s proprietary knowledge base. This is quite a common
use case for LLM-based software, and can come in one of two forms: customer-
facing or internal-facing.

An example of a customer-facing knowledge chatbot is a chatbot created by
a company for its customers to use to inquire about or get technical support
for the company’s products. An internal-facing chatbot is a chatbot that is
only used by an organization’s employees, say, to find information about
company projects or policies.

In either case, a knowledge chatbot is one which converses with users and
conveys information about an organization’s proprietary data. Some like to

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwpaieng
http://forums.pragprog.com/forums/jwpaieng

call this type of chatbot a “chat-with-your-docs” app. We’ll spend the rest of
this book building such an app.

Now, to create a knowledge chatbot, we’ll need a proprietary knowledge base.
Given that I don’t actually have a trove of private data (and if I did, I wouldn’t
disclose it here), here’s what we’ll do instead.

FLOSS Manuals1 offers a sweet corpus (a jargon term for “collection of data”)
of software documentation that covers various Free Software2 programs.
(FLOSS stands for Free/Libre Open Source Software.) Some of the more well-
known programs documented on this site include the Firefox web browser
and the WordPress content-management system (CMS). In truth, many of
these manuals are out of date, but that’s okay for our purposes.

We’re going to rebrand these manuals under different product names, and
pretend that these manuals are for software belonging to a fictional company
called GROSS, which stands for Gratuitously Rebranded Obsolete Software
Suite. The original manuals are licensed under the Creative Commons CC-
BY-SA license,3 which allow for remixing and sharing materials even for
commercial purposes.

So, GROSS “offers” (or at least, markets) a web browser, a CMS, and other
apps corresponding to each manual on the FLOSS Manuals website. Our goal
is to create a knowledge chatbot that provides tech support for the entire suite
of GROSS apps. That’s the main project that we’ll work on in this quickstart
guide. To start, we’ll focus our chatbot on one app: GROSS’s flagship web
browser, Flamehamster™.

But here’s the thing. How, exactly, do we build a chatbot that knows about
Flamehamster? As you’ve learned, an LLM only knows about the data it’s
been trained on. Given that no LLM has ever heard of the Flamehamster web
browser, how could it answer a prompt such as How do I install Flamehamster on
Linux?

Augmenting with Knowledge
Teaching an LLM about proprietary data is one of the classic problems of AI
engineering, and there are a number of solutions to it. Here, I introduce one
general and highly effective solution, which is to augment our prompts with
knowledge.

1. https://flossmanuals.net
2. https://www.fsf.org
3. https://creativecommons.org/licenses/by-sa/4.0/deed.en

Chapter 6. Augmenting a Prompt with Knowledge • 4

• Click HERE to purchase this book now. discuss

https://flossmanuals.net
https://www.fsf.org
https://creativecommons.org/licenses/by-sa/4.0/deed.en
http://pragprog.com/titles/jwpaieng
http://forums.pragprog.com/forums/jwpaieng

Here’s what I mean. In the previous chapter, I introduced the technique of
prompt augmentation. In particular, I demonstrated how we can augment a
prompt with instructions to the LLM on how to behave. However, we can also
augment prompts with other things as well. Here, our strategy will be to
augment the user prompt with our proprietary data itself.

This can be done in numerous ways, but we’ll start with the simplest
approach. That is, we’ll augment the user prompt with our entire dataset,
which in our case, will be all the contents of the Flamehamster manual. Yes,
we’ll include the entire manual inside our prompt!

Now, our manual is currently in the form of a PDF, which is difficult to include
inside a programatic prompt. As such, we’ll first convert our PDF into some
sort of text file, such as raw text or Markdown. Once the manual is in this
form, we can then easily load it as a string in our Python code.

Here’s a more specific version of what our prompt will look like. Let’s say the
user input is stored in a variable called user_input. We can create a second
variable called documentation, which is a giant string containing the contents
of the Flamehamster manual. We then send the LLM a prompt that looks
something like this:

history = [
{"role": "developer", "content": f"""You are an AI customer support
technician who is knowledgeable about software products created by
the company called GROSS. One such product is a web browser called
Flamehamster. You are to answer user queries below solely on
the following documentation: {documentation}"""},
{"role": "assistant", "content": "How can I help you today?"},
{"role": "user", "content": user_input},

]

With this prompt, the LLM has all the information it needs to answer the
user_input. With this knowledge-based prompt augmentation, it’s okay that the
LLM was never trained on Flamehamster data, since all the Flamehamster
documentation is included in the prompt itself.

Knowledge-based prompt augmentation is a brilliant but simple tactic that
can work well in many applications. Note that we’re augmenting the prompt
with both knowledge and instructions. That is, in the prompt we’re providing
knowledge in the form of documentation and also adding instructions to the LLM
to use the documentation when answering user queries.

However, there are some downsides to this particular prompt. At a cursory
glance, the prompt looks like it’s only a few lines long—but in fact, it’s huge!
The documentation variable contains all the contents of the Flamehamster

• Click HERE to purchase this book now. discuss

Augmenting with Knowledge • 5

http://pragprog.com/titles/jwpaieng
http://forums.pragprog.com/forums/jwpaieng

manual, which is well over 3,000 lines long. This will have negative ramifica-
tions on several fronts, most of which I’ll dig into at the end of the chapter.
However, there’s one pressing issue we need to deal with straight away.

Avoiding Context Window Limitations
As discussed in Diving into Tokens, on page ?, each LLM has a context
window of a limited size, meaning that the model cannot process prompts
that exceed a certain number of tokens. So, we need to be absolutely sure
that our prompt can fit inside the context window.

The first thing we need to do, then, is check the OpenAI docs to find the
context window size of our model. Say, for example, that we’re using the GPT-
4.1-mini language model. When we look up its specs page (shown in the fol-
lowing figure), we’ll see that it has a “1,047,576 context window,” which means
that our prompt cannot exceed 1,047,576 tokens. But how do we determine
the number of tokens in our prompt?

One way to do this for OpenAI models is to hop over to OpenAI’s Tokenizer
web page4 and paste our prompt in the text box there. In the next section, I
show you how I converted our PDF into a Markdown file called flamehamster.md.
When I copy the contents of flamehamster.md and paste it into the tokenizer text
box, the site tells me that flamehamster.md contains 44,908 tokens.

However, using the Tokenizer site may become frustrating to use if we’d have
multiple files to paste in. (I also don’t know if there’s some limit to the amount
of text we can drop in there.) Fortunately, we can also count tokens program-
matically.

4. https://platform.openai.com/tokenizer

Chapter 6. Augmenting a Prompt with Knowledge • 6

• Click HERE to purchase this book now. discuss

https://platform.openai.com/tokenizer
http://pragprog.com/titles/jwpaieng
http://forums.pragprog.com/forums/jwpaieng

OpenAI has a Python library called tiktoken,5 whose primary use is to convert
text into tokens for use in OpenAI models. At the same time, we can utilize
tiktoken to count the number of tokens in any text. To do this, we convert our
text into tokens, and then count how many tokens there are:

import tiktoken

Choose the encoding model
encoding_model = tiktoken.encoding_for_model("gpt-4")

Your data
with open("flamehamster.md", "r", encoding="utf-8") as file:

text = file.read()

Count tokens
tokenized_text = encoding_model.encode(text)
num_tokens = len(tokenized_text)

print(f"Token count: {num_tokens}")

Keep in mind that OpenAI has a different token system for different families
of models. Here, we’re using the token system of the gpt-4 family of models,
which includes GPT-4.1-mini.

When I ran the previous code, the output declared that the flamehamster.md file
contains 44,442 tokens. I can’t explain the discrepancy between this and the
number 44,908 that I was given by the Tokenizer website, but the two numbers
are close enough to make me confident that flamehamster.md has around 45,000
tokens. Fortunately, 45,000 is way less than GPT-4.1-mini’s context window
of 1,047,576, so GPT-4.1-mini should certainly be able to process our prompt.
We’ve dodged a bullet—for now.

Armed with our strategy of knowledge-based prompt augmentation, let’s get
to work building our chatbot.

Preparing the Data
A crucial step in building a knowledge chatbot is ensuring that our proprietary
data is in a format the chatbot can effectively use. I’ll refer to this general
process as data preparation. Data preparation can be challenging, and how
it’s done will vary widely from application to application.

The first thing to consider is how the proprietary data is currently stored. Is
it in a database? Does it take the form of an online wiki? Is it a folder of PDF
files? Data might also be spread out across multiple formats. Depending on

5. https://github.com/openai/tiktoken

• Click HERE to purchase this book now. discuss

Preparing the Data • 7

https://github.com/openai/tiktoken
http://pragprog.com/titles/jwpaieng
http://forums.pragprog.com/forums/jwpaieng

how your data is currently stored, it can be a complex job to transform them
all into one, unified format.

It would be impossible to cover all the different transformation methods in
this guide, so we’ll just work with what we have for our example project.
Luckily, in our case, all of our docs are contained as PDF files, so we only
have one format to deal with.

However, PDF isn’t the most natural format to deal with programmatically.
It may be easy for a human to read a PDF file, but computers have a more
difficult time with it. And so, we’ll probably do better if we can convert our
PDF files into a format more easily read by a Python program.

As to what format we want to convert our data to, we have a couple of options.
The simplest option would be raw text (think .txt files). Indeed, this can be
quite effective since LLMs are great at processing raw text. However, there’s
an arguably better option, which is Markdown. Markdown is very much like
raw text but has the added benefit that it organizes data into various sections
using things like headings and subheadings. (You may be familiar with
Markdown already, but if you’re feeling rusty on the details, you can find the
syntax docs here.6) This organized structure can help the LLM find more
easily what it’s looking for. For example, if a user asks a question about
accessibility in Flamehamster and the LLM notices that there’s a heading
that says ## ACCESSIBILITY FEATURES, that’s a cue to the LLM to look in that sec-
tion.

So our first goal is to transform the Firefox manual from the FLOSS Manuals
from a PDF file to Markdown. Once we do that, we’ll replace the word “Firefox”
with “Flamehamster” and the organization name “Mozilla” (the creator of
Firefox) to “GROSS.”

Besides the main FLOSS Manuals webpage, there is also a separate archived
site7 for manuals older than 2015. The primary Firefox manual can only be
found on this archived site. (The newer site only has a secondary “Firefox in
a Nutshell” manual, which is too brief for our purposes.)

If you want to cut to the chase, the URL for the manual we’ll be using is
https://archive.flossmanuals.net/_booki/firefox/firefox.pdf. Read it and you’ll feel like you’ve
traveled back in time a couple of decades!

6. https://www.markdownguide.org/basic-syntax
7. https://archive.flossmanuals.net

Chapter 6. Augmenting a Prompt with Knowledge • 8

• Click HERE to purchase this book now. discuss

https://www.markdownguide.org/basic-syntax
https://archive.flossmanuals.net
http://pragprog.com/titles/jwpaieng
http://forums.pragprog.com/forums/jwpaieng

In truth, there are many tools available for converting a PDF file into Mark-
down. Technically, we don’t even need to use code; we can use some drag-
and-drop software as well.

However, it’s important to know that when it comes to data transformation,
the quality of tools can vary widely. Also, certain tools may work better on
one dataset and worse on another dataset, even if the data is all in the same
format. For example, one PDF-to-text tool might work better on PDF files that
contain images or charts, while another tool might work better on PDF files
that contain hard-to-read text. It turns out that data transformation can be
quite a project—and deserves a book unto itself. For now, though, just
understand that it can take a lot of careful work to do data transformation
right.

One PDF-to-Markdown tool that is generally promising and seemed to work
well for the FLOSS PDFs is Docling.8 After installing the docling dependency
with uv (uv add docling), here’s the code I ran to transform the Firefox PDF to
Markdown:

from docling.document_converter import DocumentConverter

source = "https://archive.flossmanuals.net/_booki/firefox/firefox.pdf"
converter = DocumentConverter()
doc = converter.convert(source).document

with open("flamehamster.md", "w", encoding="utf-8") as f:
f.write(doc.export_to_markdown())

It took some time to run, but eventually produced a Markdown file called
flamehamster.md containing all the text from the Firefox PDF. The images were
replaced with simple <!-- image --> placeholders, so our LLM will not get to see
the contents of those images. However, this manual happened to be written
in such a way where the images are mostly supplemental; you can get all the
information you need from the actual text.

I then did a simple find/replace to swap out all the instances of the word
“Firefox” for the word “Flamehamster.” I also did the same for the word
“Mozilla” which I changed to “GROSS.” You can find a copy of flamehamster.md
in this book’s code repository.9

8. https://github.com/docling-project/docling
9. https://www.pragprog.com/titles/jwpaieng

• Click HERE to purchase this book now. discuss

Preparing the Data • 9

https://github.com/docling-project/docling
https://www.pragprog.com/titles/jwpaieng
http://pragprog.com/titles/jwpaieng
http://forums.pragprog.com/forums/jwpaieng

Implementing the Knowledge Chatbot
Now that we have our data in the desired Markdown format, we’re ready to
implement our chatbot using the strategy of knowledge-based prompt aug-
mentation. For our first test run, I’m using the GPT-4.1-mini model. Here
goes:

from dotenv import load_dotenv
from openai import OpenAI

load_dotenv()
llm = OpenAI()

with open("flamehamster.md", "r", encoding="utf-8") as file:
documentation = file.read()

assistant_message = "How can I help you today?"
print(f"Assistant: {assistant_message}\n")
user_input = input("User: ")
history = [

{"role": "developer", "content": f"""You are an AI customer support
technician who is knowledgeable about software products created by
the company called GROSS. One such product is a web browser called
Flamehamster. You are to answer user queries below solely on
the following documentation: {documentation}"""},
{"role": "assistant", "content": assistant_message},
{"role": "user", "content": user_input},

]

while user_input != "exit":
response = llm.responses.create(

model="gpt-4.1-mini",
temperature=0,
input=history

)

print(f"\nAssistant: {response.output_text}")

user_input = input("\nUser: ")

history += [
{"role": "assistant", "content": response.output_text},
{"role": "user", "content": user_input}

]

Everything in this code is likely familiar to you. We’re using the history variable
to manage conversation state, and we’re using the prompt I described earlier
in Augmenting with Knowledge, on page 4 that includes the entire documentation
in the prompt itself.

Chapter 6. Augmenting a Prompt with Knowledge • 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwpaieng
http://forums.pragprog.com/forums/jwpaieng

Test Driving the Flamehamster Chatbot
Okay, let’s test drive this thing. I’ve read over the documentation and picked
out some topics that the chatbot should hopefully be able to answer.

My first prompt was: Can I restore a closed tab?

Here’s what our chatbot had to say:

Assistant: Yes, you can restore a closed tab in Flamehamster. Here's how:

1. Click the **History** menu at the top of the Flamehamster window.
2. Select **Recently Closed Tabs**.
3. From the list, click the name of the tab you want to reopen.

Alternatively, you can:

- Press **Ctrl+Shift+T** (Cmd+Shift+T on Mac) to reopen the last closed tab.
Pressing this shortcut repeatedly will reopen previously closed tabs
in reverse order.

You can also choose **Open All in Tabs** from the Recently Closed Tabs menu
to restore all recently closed tabs at once.

Let me know if you need help with anything else!

It sounds like this could be right! Let’s check the manual to be sure. It seems
like the chatbot is getting its information from the section at line 1434. It
says there:

RESTORING CLOSED TABS

Flamehamster tracks the tabs that you have recently closed. To restore one or
all closed tabs, follow these steps:

1. Click the following menu command: History > Recently Closed Tabs .
2. Do any of the following:
* Click the name of the tab that you want to re-open.
* Click Open All in Tabs to restore all of the closed tabs.
* Press Ctrl+Shift+T to open each tab one by one in reverse order.

Wow, the chatbot really nailed it—sweet!

Let’s try one other prompt for now: How do I clear my history?

Here was the response:

Assistant: To clear your browsing history in Flamehamster,
follow these steps:

1. Click on the **Tools** menu at the top of the Flamehamster window.
2. Select **Clear Recent History**.
3. In the Clear Recent History dialog, choose the time range to clear
from the drop-down menu at the top (e.g., last hour, last two hours,
or Everything to clear all history).
4. Click the down arrow next to **Details** to expand the list of data types.

• Click HERE to purchase this book now. discuss

Implementing the Knowledge Chatbot • 11

http://pragprog.com/titles/jwpaieng
http://forums.pragprog.com/forums/jwpaieng

5. Select the types of data you want to clear, such as:
- Browsing & Download History
- Form & Search History
- Cookies
- Cache
- Active Logins
- Offline Website Data

6. Once you have selected the desired items, click **Clear Now**.

Please note that clearing history cannot be undone.

If you want to prevent Flamehamster from storing history
in the future, you can configure privacy settings
under Tools > Options (or Preferences) > Privacy panel.

Let me know if you want instructions on that!

This sounds plausible, but is it accurate? In looking at the actual manual,
I’ve found that the LLM must be deriving most of its response from a section
that begins on line 2549. Here’s what it says there:

CLEARING YOUR HISTORY

Flamehamster allows you to clear some or all of your browsing history.
This will delete information from your profile and from disk that could be
used to identify your activities online.

<!-- image -->

Clearing Flamehamster History:

1. Click on Tools > Clear Recent History .
2. Flamehamster will display the Clear Recent History dialog, with a
drop-down menu for the time period to clear. You can choose between the
last hour and all saved history.
3. If you only wish to delete some of your history, such as the information
stored for forms or in search history, click Details . This will open a list
of items stored by Flamehamster, such as Cookies, Cache, and
Form & Search History.
4. Once you have selected the information you wish to delete, click Clear
Now. Note that this cannot be undone.

It turns out that the AI seemed to get it basically right. If we look really care-
fully, though, we might spot a couple of potential hallucinations, those “facts”
that an LLM completely makes up. For example, the chatbot told us that some
of the types of things we can clear from our history include “Active Logins”
and “Offline Website Data.” However, it’s not clear from the actual manual if
those options actually exist. Perhaps this is a small detail, but one certainly
worth noting.

Chapter 6. Augmenting a Prompt with Knowledge • 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwpaieng
http://forums.pragprog.com/forums/jwpaieng

Now, it’s your turn. Test out this little chatbot based on your own prompts,
and compare the responses with the manual. What do you think about the
quality of our chatbot? There’s no wrong answer to this question.

I’m curious to see if the quality changes when we upgrade our model from gpt-
4.1-mini to gpt-4.1. When I do this and enter a prompt, though, I get this surpris-
ing response:

openai.RateLimitError: Error code: 429 - {'error': {'message': 'Request too
large for gpt-4.1 in organization org-rHItPtE5zH8RH3F7En9Z4QbO on
tokens per min (TPM): Limit 30000, Requested 45012. The input or output
tokens must be reduced in order to run successfully. Visit
https://platform.openai.com/account/rate-limits to learn more.',
'type': 'tokens', 'param': None, 'code': 'rate_limit_exceeded'}}

Oof. It turns out that there’s another hurdle I didn’t see coming. If we read
the error message carefully, we’ll see that it’s not about the context window
(which was indeed large enough to contain our prompt), but about a separate
issue of rate limiting. When I visit the link from the error message (https://plat-
form.openai.com/account/rate-limits), I see this:

My rate limits displayed here are based on how much money I spend at
OpenAI. The limits get increased as one becomes a better paying customer,
but at my simple usage level, I’m allowed only 30,000 tokens per minute
(TPM) for the gpt-4.1 model. As the error message says, though, my current
request contains 45,012 tokens, which exceeds this limit.

Now, gpt-4.1-mini allows for 200,000 TPM, but this doesn’t mean that our
chatbot will operate well even if we have it use gpt-4.1-mini. If even a single
user makes five requests within a minute, our app will be throttled (since

• Click HERE to purchase this book now. discuss

Implementing the Knowledge Chatbot • 13

http://pragprog.com/titles/jwpaieng
http://forums.pragprog.com/forums/jwpaieng

45012 * 5 = 225060). And if multiple users interact with our chatbot at once,
we’ll be very, very throttled. So, we’ve hit a pretty solid wall.

Switching from OpenAI to a self-hosted model would only partially solve this
problem. Although we wouldn’t be subject to official rate limits, there’s a
reason why rate limits exist. When any computer is bombarded with too many
tasks at once, it slows down. Likewise, if too many users are hitting your LLM
all at once, the LLM inference can become too slow to be effective.

Running into PACKing Problems
Despite this setback, we’re on the right track, for knowledge-based prompt
augmentation is a viable strategy in general. It’s just that our specific imple-
mentation of knowledge-based augmentation is problematic, at least for our
use case.

Although we’ve only discussed one specific form of knowledge-based augmen-
tation so far, I’m going to give it a name to distinguish it from other forms
we’ll encounter in later chapters. I’m going to call this type of prompt a
“PACK”—which stands for Prompt with All Corpus Knowledge. That is, we’re
creating a prompt that contains our entire corpus of proprietary data. (The
verb form of PACK is PACKing, of course.)

We’ve seen a couple of problems with PACKing, but let me present a more
complete list:

1. A PACK may be too large for the context window.
2. PACKing may cause our app to exceed rate limits.
3. PACKing can be expensive, since each prompt has many input tokens.
4. There’s increased latency when an LLM has to process a large PACK.
5. The larger the PACK, the more likely the LLM will miss some details buried

inside it.

Each of these problems are considerable; let’s walk through them briefly.

Although the chatbot we built skirted around the context window issue, our
final project won’t. Remember, we eventually want our chatbot to cover the
entire GROSS suite of apps, and they won’t all fit in the context window at
once. (I did the math.)

We’ve already experienced the pain of rate limits firsthand. Even the Flame-
hamster manual alone got throttled.

If you recall from Checking API Usage, on page ?, I made 34 requests that
cost a total of 9 cents. With the Flamehamster app, when I have a single

Chapter 6. Augmenting a Prompt with Knowledge • 14

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwpaieng
http://forums.pragprog.com/forums/jwpaieng

session and ask a total of just three questions, I already rack up a bill of 6
cents.

Remember, each time the user takes a turn, the entire conversation history
is included in the prompt. And because this history contains all the documen-
tation, this means that the documentation is included at the top of the prompt
on each and every turn. It emerges, then, that each user turn is relatively
costly. Similarly, because each PACK is large, the LLM responds at a slower
clip since it has to process the entire documentation on each conversation
turn.

The fifth problem I listed is one I haven’t touched on yet, but it’s important.
There’s research10 that when it comes to long prompts, an LLM may lose sight
of some details buried in the middle of the prompt. In our case, this means
that an LLM may miss important facts from the manual, but those facts might
be needed to correctly answer a particular user query! As a result, PACKing
may lead to reduced accuracy in some LLM responses.

Because of all the aforementioned problems, it turns out that while augment-
ing a prompt with knowledge may be a good idea, doing this through PACKing
isn’t suitable for the GROSS chatbot. It may work for other apps with a
smaller proprietary dataset, but we’re going to need some other approach.

Wrapping Up
In this chapter, you explored the fundamental AI engineering technique of
knowledge-based prompt augmentation, which allows an LLM to answer
queries about an organization’s proprietary data. At the same time, our main
project is underway! We started to apply knowledge-based augmentation to
the GROSS chatbot. So far our app seems promising—assuming there’s only
a single user who isn’t querying the app too many times in succession, and
we stick with GPT-4.1-mini—as it gave some decent answers about the
Flamehamster web browser. Honestly, that’s pretty cool. (Or hot?)

Yet, we encountered some serious hurdles with our specific implementation
of PACKing our prompts. This approach may perhaps work for other apps,
but the GROSS chatbot will need a more sophisticated approach. In the next
chapter, I introduce one such solution. It’s called retrieval-augmented gener-
ation (RAG), and is a foundational concept of AI engineering.

10. https://arxiv.org/abs/2307.03172

• Click HERE to purchase this book now. discuss

Wrapping Up • 15

https://arxiv.org/abs/2307.03172
http://pragprog.com/titles/jwpaieng
http://forums.pragprog.com/forums/jwpaieng

