
Extracted from:

A Common-Sense Guide to Data
Structures and Algorithms in Python,

Volume 1
Level Up Your Core Programming Skills

This PDF file contains pages extracted from A Common-Sense Guide to Data
Structures and Algorithms in Python, Volume 1, published by the Pragmatic

Bookshelf. For more information or to purchase a paperback or PDF copy, please
visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas

https://www.pragprog.com

A Common-Sense Guide to Data
Structures and Algorithms in Python,

Volume 1
Level Up Your Core Programming Skills

Jay Wengrow

The Pragmatic Bookshelf
Dallas, Texas

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and The Pragmatic Programmers, LLC was aware of a trademark claim, the designa-
tions have been printed in initial capital letters or in all capitals. The Pragmatic Starter
Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf,
PragProg and the linking g device are trademarks of The Pragmatic Programmers,
LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result
from the use of information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software
developers, please visit https://pragprog.com.

The team that produced this book includes:

Publisher: Dave Thomas
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Katharine Dvorak
Copy Editor: L. Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 979-8-88865-035-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—December 2023

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 7

Big O in Everyday Code
In the previous chapters, you learned how to use Big O notation to express
the time complexity of code. As you’ve seen, quite a few details go into Big O
analysis. In this chapter, we’ll use everything you’ve learned so far to analyze
the efficiency of practical code samples that might be found in real-world
codebases.

Determining the efficiency of our code is the first step in optimizing it. After
all, if we don’t know how fast our code is, how would we know if our modifi-
cations would make it faster?

Additionally, once we know how our code is categorized in terms of Big O
notation, we can make a judgment call as to whether it may need optimization
in the first place. For example, an algorithm that is O(N2) is generally consid-
ered to be a slow algorithm. So if we’ve determined that our algorithm falls
into such a category, we should take pause and wonder if there are ways to
optimize it.

Of course, O(N2) may be the best we can do for a given problem. However,
knowing that our algorithm is considered slow can signal to us to dig deeper
and analyze whether faster alternatives are available.

In the future chapters of this book, you’re going to learn many techniques
for optimizing our code for speed. But the first step of optimization is being
able to determine how fast our code currently is.

So let’s begin.

Mean Average of Even Numbers
The following method accepts an array of numbers and returns the mean
average of all its even numbers. How would we express its efficiency in terms
of Big O?

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwpython
http://forums.pragprog.com/forums/jwpython

def average_of_even_numbers(array):
sum = 0
count_of_even_numbers = 0

for number in array:
if number % 2 == 0:

sum += number
count_of_even_numbers += 1

if count_of_even_numbers == 0:
return None

return sum // count_of_even_numbers

Here’s how to break the code down to determine its efficiency.

Remember that Big O is all about answering the key question: if there are N
data elements, how many steps will the algorithm take? Therefore, the first
thing we want to do is determine what the N data elements are.

In this case, the algorithm is processing the array of numbers passed into
this method. These, then, would be the N data elements, with N being the
size of the array.

Next, we have to determine how many steps the algorithm takes to process
these N values.

We can see the guts of the algorithm is the loop that iterates over each number
inside the array, so we’ll want to analyze that first. Since the loop iterates
over each of the N elements, we know the algorithm takes at least N steps.

Looking inside the loop, though, we can see that a varying number of steps
occur within each round of the loop. For each and every number, we check
whether the number is even. Then, if the number is even, we perform two more
steps: we modify the sum variable, and we modify the count_of_even_numbers variable.
So we execute two more steps for even numbers than we do for odd numbers.

As you’ve learned, Big O focuses primarily on worst-case scenarios. In our
case, the worst case is when all the numbers are even, in which case we
perform three steps during each round of the loop. Because of this, we can
say that for N data elements, our algorithm takes 3N steps. That is, for each
of the N numbers, our algorithm executes three steps.

Now, our method performs a few other steps outside of the loop as well. Before
the loop, we initialize the two variables and set them to 0. Technically, these
are two steps. After the loop, we perform another step: the division of sum /
count_of_even_numbers. Technically, then, our algorithm takes three extra steps
in addition to the 3N steps, so the total number of steps is 3N + 3.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwpython
http://forums.pragprog.com/forums/jwpython

However, you also learned that Big O notation ignores constant numbers, so
instead of calling our algorithm O(3N + 3), we simply call it O(N).

Word Builder
The next example is an algorithm that collects every combination of two-
character strings built from an array of single characters. For example, given
the array ["a", "b", "c", "d"], we’d return a new array containing the following
string combinations:

[
'ab', 'ac', 'ad', 'ba', 'bc', 'bd',
'ca', 'cb', 'cd', 'da', 'db', 'dc'

]

Following is an implementation of this algorithm. Let’s see if we can figure
out its Big O efficiency:

def word_builder(array):
collection = []

for index_i, i in enumerate(array):
for index_j, j in enumerate(array):

if index_i != index_j:
collection.append(i + j)

return collection

Here we’re running one loop nested inside another. The outer loop iterates
over each character in the array, keeping track of the index of i. For each
index_i, we run an inner loop that iterates again over each character in the
same array using the index index_j. Within this inner loop, we concatenate the
characters at index_i and index_j, with the exception of when index_i and index_j
are pointing to the same index.

To determine the efficiency of our algorithm, we once again need to determine
what the N data elements are. In our case, as in the previous example, N is
the number of items inside the array passed to the function.

The next step is to determine the number of steps our algorithm takes relative
to the N data elements. In our case, the outer loop iterates over all N elements,
and for each element, the inner loop iterates again over all N elements, which
amounts to N steps multiplied by N steps. This is the classic case of O(N2)
and is often what nested-loop algorithms turn out to be.

Now, what would happen if we modified our algorithm to compute each
combination of three-character strings? For our example array of ["a", "b", "c",
"d"], our function would return the following array:

• Click HERE to purchase this book now. discuss

Word Builder • 7

http://pragprog.com/titles/jwpython
http://forums.pragprog.com/forums/jwpython

[
'abc', 'abd', 'acb',
'acd', 'adb', 'adc',
'bac', 'bad', 'bca',
'bcd', 'bda', 'bdc',
'cab', 'cad', 'cba',
'cbd', 'cda', 'cdb',
'dab', 'dac', 'dba',
'dbc', 'dca', 'dcb'

]

Here’s an implementation that uses three nested loops. What is its time
complexity?

def word_builder(array):
collection = []

for index_i, i in enumerate(array):
for index_j, j in enumerate(array):

for index_k, k in enumerate(array):
if (index_i != index_j and

index_j != index_k and index_i != index_k):
collection.append(i + j + k)

return collection

In this algorithm, for N data elements, we have N steps of the i loop multiplied
by the N steps of the j loop multiplied by the N steps of the k loop. This is N
* N * N, which is N3 steps, which is described as O(N3).

If we had four or five nested loops, we’d have algorithms that are O(N4) and
O(N5), respectively. Let’s see how these all appear on a graph:

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwpython
http://forums.pragprog.com/forums/jwpython

Optimizing any code from a speed of O(N3) to O(N2) would be a big win since
the code becomes exponentially faster. However, the algorithm above remains
stuck at O(N3).

Array Sample
In the next example, we create a function that takes a small sample of an
array. We expect to have very large arrays, so our sample is just the first,
middlemost, and last value from the array.

Here’s an implementation of this function. See if you can identify its efficiency
in Big O:

def sample(array):
if not array:

return None

first = array[0]
middle = array[len(array) // 2]
last = array[-1]

return [first, middle, last]

In this case again, the array passed into this function is the primary data, so
we can say that N is the number of elements in this array.

However, our function ends up taking the same number of steps no matter
what N is. Reading from the beginning, midpoint, and last indexes of an array
each takes one step no matter the size of the array. Similarly, finding the
array’s length and dividing it by 2 also takes one step.

Since the number of steps is constant—that is, it remains the same no matter
what N is—this algorithm is considered O(1).

• Click HERE to purchase this book now. discuss

Array Sample • 9

http://pragprog.com/titles/jwpython
http://forums.pragprog.com/forums/jwpython

