
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Preface
The days of slow software are long gone. People expect their technology to be
fast, and I mean really fast. According to one study, more than half of users
of mobile websites will abandon a site if it takes more than three seconds to
load. Another study reports that for each second that a web page takes to
load, user satisfaction goes down by 16%.

At the same time, people also want their technology to fit on even the smallest
of devices. Whether it’s a smartphone that fits easily into your pocket or a
smartwatch that fits on your wrist, people want to bring their computers
wherever they go. And they don’t want these devices to be any less capable
than a full-fledged desktop computer. However, to get apps to work on such
small devices, those apps must consume the least memory possible.

The key to writing software that is both fast and memory-efficient is the
mastery of data structures and algorithms. Designing the “right” algorithm
usually involves a combination of knowledge, ingenuity, and persistence. This
book is where you’ll gain the knowledge.

As you may have gathered from the title, this volume is the second in a series.
In A Common-Sense Guide to Data Structures and Algorithms in Python, Volume
1, I covered the foundational concepts. If you’ve read that volume or already
know the concepts therein, you already know a lot! But now it’s time to level
up. Not only will you learn a wide variety of new algorithms and data struc-
tures, but you’ll also become more sophisticated in algorithmic analysis and
design.

Now, there are quite a few books that have already been written on these
subjects. But if you’ve read any of them, you may have encountered the same
problem I have: they’re really hard to understand! It’s not just you—I can find
myself reading and rereading the same paragraph in such a book many times
before I get an inkling of what’s going on. Many a developer has given up
trying to learn these concepts, feeling incapable of grasping such complex
ideas.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwpython2
http://forums.pragprog.com/forums/jwpython2

But here’s the thing. Yes, these concepts are complex. But every complex
concept is made up of a combination of simple concepts. It’s not beyond
anyone to master data structures and algorithms. The subject just needs to
be taught correctly.

And that’s the entire point of this book. I’ve pulled out each thread from the
tapestry of each complex concept and laid them all out for you. By presenting
each thread individually and in the correct sequence, I’ll teach you these ideas
so that you’ll grasp them easily and clearly. Critically, there are literally
hundreds of diagrams, all clear and beautiful, that will help clarify each
concept for the visual learner. Finally, you’ll have a lot of fun along the way.
I write in an informal style, and crack jokes whenever my editor will let me.
Sometimes, the jokes are even funny.

Who Is This Book For?
You may be a professional software engineer of any experience level, a budding
computer science student, or a code hobbyist. No matter what box you fit
into, if you already know the basics of data structures and algorithms and
want to level up, this is the book you’re looking for.

If you’ve already read Volume 1 of this book, you’re ready to dive into this
book. (And welcome back!)

If you haven’t read Volume 1, I won’t take it personally. However, you do need
to be pretty familiar with certain topics if you want to comprehend this volume.
These topics, in alphabetical order, are:

• Arrays
• Big O notation for time and space complexity
• Binary search
• Binary search trees
• Hash tables
• Heaps
• Recursion
• Sorting algorithms (the gist of Selection Sort and Quicksort)

In any case, I make many direct references to Volume 1 throughout this vol-
ume so you can always gain more context if you need to.

What’s in This Book?
In this volume, I don’t simply cover some laundry list of additional data
structures and algorithms. Yes, I cover those too, but the main focus of this

Preface • iv

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwpython2
http://forums.pragprog.com/forums/jwpython2

book is to help you become more proficient with your analysis and design of
algorithms.

Specifically, you’ll find that there are three main themes that are threaded
throughout this volume:

1. Going beyond Big O. While Big O notation is a useful, and even crucial
tool, for algorithmic analysis, it has some significant limitations when
applied to the real world. I’ll show you where Big O notation falls short,
and how to use benchmarking and other forms of analysis to ensure that
your code will truly be efficient in real life.

2. Randomization. There are many components you can integrate into an
algorithm you’re designing. One of the most useful, but perhaps surprising,
of these components is randomness. We begin with the basics of random-
ization algorithms, and then see how they can make your code more effi-
cient in a wide variety of scenarios.

3. Hardware. An all-too-often overlooked factor in algorithm design is how
your computer’s hardware setup can impact the efficiency of your code.
Sure, in an academic vacuum, how much memory your computer has
shouldn’t affect the Big O classification of an algorithm. But in truth, a
computer’s hardware can have a huge impact on how fast your code will
perform when you actually run it.

With regard to specific data structures and algorithms, here’s a list of some
of them that you’ll encounter. I’ve listed them in the order in which they’re
presented in the book:

• Mergesort
• Fisher-Yates Shuffle
• Load balancing with the power of two choices
• LRU caches
• Red-black trees
• Randomized treaps
• External-memory algorithms
• B-trees
• Merging K sorted lists
• M/B-Way Mergesort
• Monte Carlo algorithms
• Random sampling
• Fermat’s Primality Test
• Randomized hashing
• Hash function families

• Click HERE to purchase this book now. discuss

What’s in This Book? • v

http://pragprog.com/titles/jwpython2
http://forums.pragprog.com/forums/jwpython2

• Rabin-Karp substring search
• Sliding-window technique
• Boolean arrays
• Bit vectors
• Bit manipulation
• Bloom filters

In addition, each chapter contains exercises that will help you practice
everything you’ve learned. Solutions to each exercise can be found at the back
of the book.

A handful of exercises are “special.” You’ll see that I marked some as being
a “Puzzle” or “Exploration” or the like. You aren’t expected to know the answer
even if you’ve mastered the chapter. Rather, they ask you to apply ingenuity
and see if you can stretch yourself even further. Occasionally, I’ll also mark
an exercise as a “New Concept” if I’ll be teaching a brand new idea in the
associated solution.

How to Read This Book
In short, this book was designed to be read in order.

This isn’t a book containing a hodgepodge of topics. I’ve painstakingly built
up the concepts so that each chapter builds upon the previous one, and
there’s a kind of “story line” arc that carries you through the book.

You might be able to skip to a chapter of interest, but you run the risk of not
catching every bit of nuance, since I’ll have assumed that you read the previ-
ous chapters. Of course, after you’ve read the book once, you should be able
to reread any chapter you wish for reference.

The one exception is Chapters 7 and 8, which are a bit of a “side quest.” You
could technically skip those and come back to them later if you’d like.

A Note About the Code
I strived to follow PEP 8 standards (for the most part) and write the code in
such a way so that it runs on Python Version 3.

That being said, I want to emphasize that the concepts in this book apply to
virtually all coding languages, and I expect that some people not as familiar
with Python will be reading this book. Because of this, I’ve sometimes avoided
certain Python idioms where I thought that this would utterly confuse people
coming from other languages. It’s a tricky balance to keep the code Pythonic

Preface • vi

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwpython2
http://forums.pragprog.com/forums/jwpython2

while also being welcoming to non-Python coders, but I hope that I’ve main-
tained an equilibrium that satisfies most readers.

Virtually all the code in this book can be downloaded online from the book’s
web page.1 This code repository contains automated tests too! I encourage
you to check out the tests since they don’t appear in the actual book, and
can help clarify how to run the main modules.

You’ll find some longer code snippets under the headings that read “Code
Implementation.” I certainly encourage you to study these code samples, but
you don’t necessarily have to understand every last line to proceed to the next
section of the book. If these long pieces of code are bogging you down, just
skim (or skip) them for now.

Finally, it’s important to note that the code in this book is not “production
ready.” My greatest focus has been to clarify the concept at hand, and while
I did also try to make the code generally complete, I have not accounted for
every edge case and optimization. There’s certainly room for you to optimize
the code further—so feel free to go crazy with that.

Online Resources
You can find more information about the book, download the source code for
the code examples, and help improve the book by reporting errata, typos, and
content suggestions on the book’s web page2 on pragprog.com.

Additionally, I post updates about my writing at my website.3 There you can
find more information about my books as well as video tutorials made by my
colleagues and me in which we use the “common-sense” approach to
explaining all sorts of technologies and concepts. In particular, you might
enjoy my “Jay Vs. Leetcode”4 video series where I solve programming puzzles
using many of the techniques discussed in this book.

Connecting
I enjoy connecting with my readers and invite you to find me on LinkedIn.5

I’d gladly accept your connection request—just send a message that you’re a
reader of this book. I look forward to hearing from you!

1. https://pragprog.com/titles/jwpython2
2. https://pragprog.com/titles/jwpython2
3. https://commonsensedev.com
4. https://www.commonsensedev.com/jay-vs-leetcode
5. https://www.linkedin.com/in/jaywengrow

• Click HERE to purchase this book now. discuss

Online Resources • vii

https://pragprog.com/titles/jwpython2
https://pragprog.com/titles/jwpython2
https://commonsensedev.com
https://www.commonsensedev.com/jay-vs-leetcode
https://www.linkedin.com/in/jaywengrow
http://pragprog.com/titles/jwpython2
http://forums.pragprog.com/forums/jwpython2

