Volume 2

A Common-Sense Guide to

Data Structures and
Algorithms in Python

Level Up Your Core Programming Skills

Jay Wengrow
edited by Katharine Dvoralk

This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

CHAPTER 7

To B-Tree or Not to B-Tree:
External-Memory Algorithms

Throughout our journey so far, we've been operating under the assumption
that our algorithms are dealing with data that is contained completely within
the computer’s main memory (otherwise known as RAM) or caches. In other
words, our computer has all the data loaded in memory and ready to go, and
the computer then performs an algorithm on that data.

However, this isn’t always the case. Let's say we want to calculate the sum
of a list of integers that is so long that it takes up 50GB of space. If we're
working with a computer that has only 8GB of main memory, we immediately
encounter a problem. How is our computer supposed to process such a list
if the list can’t even fit inside the computer’s active memory? It’s not even
possible to declare the statement:

array = [6, 2, 0, 1, 8... super long list that is 50GB long]

While our computer probably wouldn't explode if we attempted this, the
computer would reject the statement, whining that it can’t hold so many
numbers.

In this chapter, you’ll learn how to properly analyze the efficiency issues
surrounding “big data” problems such as this one, and write effective external-
memory algorithms to process such data quickly and with minimal space
consumption.

Another important problem we’ll deal with in this chapter is how to manage
tree data structures when dealing with massive amounts of data. As you've
seen throughout our discussions of trees, a tree such as a BST (be it a classic
one, a red-black tree, or a treap) is important for being able to search for data

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwpython2
http://forums.pragprog.com/forums/jwpython2

o4

quickly while also keeping the data sorted. But what if our data is so large
that our tree can’t fit inside main memory? To deal with this not-uncommon
conundrum, you’ll learn about the important and ubiquitous B-tree, a tree
specialized for storing lots of information.

In this as well as the next chapter, we embark on a “side quest” in which we
explore the fascinating, vast, and important world of external-memory algo-
rithms. This chapter is indeed connected to the previous ones, as here we’ll
feature another self-balancing tree just as we did in the previous two chapters.
However, we won't return to our main theme of randomization again until
Chapter 9. If you so chose, you could skip ahead at this point to Chapter 9
and return to Chapters 7 and 8 at some later time.

External Memory

Let’s get back to our 50GB list of integers. To store such a list, we need to
store the integers somewhere outside main memory, since the list certainly
won't fit inside main memory. Typically, we’d do this in the filesystem,
assuming that our filesystem is larger than 50GB.

More specifically, we’d create a file that stores all the integers. Given that
such a file would itself be massive, we might also decide to break up the data
into several smaller files.

In any case, though, this approach alone doesn'’t fully solve our problem. This
is because when we run code, the computer works directly with data in main
memory, and not does not deal directly with data from the filesystem. We
touched on this earlier in The Memory Hierarchy, on page ?, but let me

review these details and elaborate on them a bit further, as these concepts
are the foundation of the this chapter.

You can think about a computer’s filesystem as a storage center, similar to
those walk-in storage centers where you keep physical stuff you don’t use on
aregular basis. If I store a sofa in such a storage center, I will never go to the
storage center to sit on that sofa. Similarly, when code performs an algorithm,
the software doesn’t act directly on data in the filesystem “storage center.”
Instead, the code copies data from the filesystem into main memory and only
then does our code actually do something with that data.

Using the memory hierarchy diagram you first saw on page ?, we're essen-
tially referring to the following transfer of data:

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwpython2
http://forums.pragprog.com/forums/jwpython2

External Memory ® 5

CPU
registers

L2 cache

/ L3 cache \
<

2
@“"QLW RAM AN
N
Local filesystem \
/ External data (e.g. the Web) \

In truth, some of the data may also be copied into the various cache levels.
And so when I refer to either “main memory,” “RAM,” or even simply “memory”
in this chapter, I mean to include the cache levels as well.

And so, we return to our million-dollar question: how can our code work with
data if the data is too large to fit inside RAM?

Memory Blocks

Fortunately, computers have a built-in technique for handling this kind of
thing. When a computer loads data from the filesystem, it does so one block
at a time. The term block refers simply a section of data. Taking our example
of a 50GB list of integers, the computer might view it as a collection of fifty
1GB blocks.

The exact size of a block depends largely on your particular computer’s
hardware and operating system. Because of this, the computer by default
generally uses the same block size across all pieces of software.

Now, let’s say that we're working with a computer that has 8GB of RAM and
a block size of 1GB. (The filesystem can be infinitely large for the purposes
of our discussion.) Here’s the gist of how the computer may compute the sum
of integers contained in a 50GB file:

Because our computer has 8GB RAM, the computer will start out by loading
the first 8 blocks of data from our 50GB file, with each block containing 1GB
of data. This will fill the capacity of our RAM, since our RAM is 8GB, and the
8 blocks contain a combined total of 8GB of data. Our algorithm will then
compute the sum of those integers and keep that sum in a variable. This
variable, essentially, tracks the “total sum so far.”

Next, the computer will eject those first 8 blocks from memory, freeing up
our RAM, and then load the next 8 blocks from the file. We'll compute the
sum of those freshly loaded integers, and add the result to the “total sum so
far.” We repeat this process until we've processed all 50GB worth of integers.
Once we've completed this process, our “total sum so far” variable will actu-

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwpython2
http://forums.pragprog.com/forums/jwpython2

°6

ally contain the total sum of the entire 50GB list of integers. And so, we've
succeeded at our goal of summing up the entire massive list.

Let’s look at a high-level visual of the algorithm I've just described. However,
to keep the diagrams small enough to fit on the page, I'm going to change the
size of our main memory and blocks. Imagine, now, that our computer is so
tiny that its RAM can store only 3 integers. At the same time, let’s also say
that the block size, too, is 3 integers.

Here’s a depiction of our computer’s main memory, and a file in the filesystem
containing integers that we want to sum up:

81213(5111218[4(1| | riessten

Main Memory

Currently, the main memory is empty.

Our computer can’t calculate the sum in the classic way, since it can only
work with 3 integers in main memory at once. Again, this is because our
example computer’'s RAM has a maximum capacity of 3 integers.

So we first have to load a block of 3 integers from the file, and compute the
sum of those 3 integers:

81213(5111218[4 (1| | riressten
\

M Block

8 2 3 Main Memory
|
v

Total Sum (so far):@

We then load the second block from the file, sum those integers, and add that
to our total sum so far:

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwpython2
http://forums.pragprog.com/forums/jwpython2

External Memory © 7

81213[5(1121814 (1| | Fritesysten

5 1 2 Main Memory

Total Sum (so far): 13 += 21

Finally, we do the same with the last block:

81213(5111218[4 (1] | riressten
7

Block ;
8 4 1 Main Memory

\

Total Sum (so far): 21 +@=34

And the algorithm is complete.

We can refer to an algorithm like this as an external-memory algorithm, since
it’s an algorithm that processes data from an external source, such as the
filesystem.

What's really sweet is that for many of Python’s built-in tools for loading data
from files, the computer manages all of this block maneuvering automatically,
and we don’t have to write explicit code to move blocks of data.

So it might seem that we can continue to write our code the same way we've
always done, and remain completely oblivious to the way our computer
transfers data blocks from the filesystem to main memory. However, you'll
see soon that for many applications this couldn’t be further from the truth.

Slow I/0s

It's a bit of a mouthful to keep saying the phrase “transfer data from the
filesystem to main memory.” So let’s use a shorthand term. An I/O, which

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwpython2
http://forums.pragprog.com/forums/jwpython2

°8

stands for “input/output,” is an operation that transfers computer data. It
can refer to various types of data transfers in different contexts, but in this
chapter, I'll use it to refer to transferring data from the filesystem to main
memory.

Now, while I'd love for you to remember everything I ever write (including the
jokes), if there’s only one thing you can remember from this chapter, it should
be this: I/Os are extremely slow!

A major theme of this book has been that we measure an algorithm’s time
complexity in terms of the number of “steps” the algorithm takes to complete
a task. However, if our algorithm involves I/Os, our perspective needs to
change. This is because an 1/O can be thousands of times slower than a
typical “step” that takes place in main memory.

This has major ramifications. If we have an algorithm that involves 49 main-
memory steps plus one I/O step, we might have thought to say that this
algorithm takes 50 steps. But this would be a poor reflection of the algorithm’s
true speed. For if the I/O has the equivalent speed of 1,000 main-memory
steps, our algorithm is really much slower than just 50 steps. It's more like
1,049 steps! There’s the 49 main-memory steps, but there’s also the single
I/0 that is as slow as 1,000 main-memory steps.

And so, when we have an algorithm that loads data from the computer’s
filesystem, our long-standing Big O approach to measure time complexity is
no longer as useful as it once was.

However, fear not, for we’ll set everything right again. We just need to modify
the way we use Big O notation to accommodate external-memory algorithms.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwpython2
http://forums.pragprog.com/forums/jwpython2

