
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Here’s a fascinating question: how does a computer use bits to represent a
negative number anyway? A common approach is a system known as two’s
complement. In this article, I outline how it works.

As you know, the following binary numbers represent the eight numbers 0
through 7:

4 2 1 Places

0: 0 0 0
1: 0 0 1
2: 0 1 0
3: 0 1 1
4: 1 0 0
5: 1 0 1
6: 1 1 0
7: 1 1 1

The left-most digit place is the 4’s place. With two’s complement, instead of
the left-most place being what you’d expect, it is instead the negative of that
place. In this example, this means that the left-most place is the negative 4’s
place. The other digit places, though, are what you’d expect.

While two’s complement might sound weird at first, it’s actually incredibly
useful. With the left-most place being the negative 4’s place, we can still use
the three-digit places to represent eight different numbers. However, instead
of the numbers being 0 through 7 as above, we can now represent -4 through
3, as follows:

-4 2 1 Places

-4: 1 0 0
-3: 1 0 1
-2: 1 1 0
-1: 1 1 1
0: 0 0 0
1: 0 0 1
2: 0 1 0
3: 0 1 1

In this example, you can see that 110 in binary represents the decimal number
-2. This is because there is one -4 and one 2. And -4 + 2 = -2.

Python does indeed use the two’s complement system. However, this begs
the question: why does the Python expression 0b111 return 7? Shouldn’t it
return -1, as in the previous table?

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwpython2
http://forums.pragprog.com/forums/jwpython2

The answer is that when we enter the Python binary string 0b111, Python,
under the hood, pads the left of the string with at least one 0 bit before com-
puting the expression. (Actually, Python pads the string with an arbitrary
number of 0 bits. You can’t be sure how many 0 bits there will be, but it
really doesn’t matter.) So, our binary string of 111 is actually 0111. Even with
two’s complement, this translates to:

-8 4 2 1 Places

7: 0 1 1 1

That is, since there’s a 0 bit in that left-most “negative” place, our number
ends up being a positive number in the end.

With this in mind, you can now understand why the ~ Python operator always
returns a negative decimal number. For example, let’s analyze the expression
~7.

Now, 7 in binary is 111. However—and this is key—Python, as I said before,
automatically pads each binary string with an arbitrary number of 0 bits on
the left-most side of the string. So, in Python-Land, 7, in binary, is actually
something like 0111.

And here’s the clincher. When we invert 0111, we get the result of 1000. And
with two’s complement, this is -8:

-8 4 2 1 Places

-8: 1 0 0 0

And so, ~7 yields -8.

In fact, this pattern holds true for all numbers. That is, when we invert any
number N, the result will be -(N + 1). So, ~50 yields -51. And ~99 yields -100.

I’ll point out one last thing, and it’s pretty cool. Remember when I said that
Python automatically pads a binary string with an arbitrary number of 0 bits
on the left? This means that it might pad it with a single 0 bit, or it might pad
it with eleven 0 bits. Now, we know that for positive numbers this doesn’t
matter, since 00000000001 is the same as 0001 and 01 and 1.

What’s fascinating is that the number of padded 0 bits doesn’t matter for
inverted numbers either. That is, whether we invert 0001 (so that it becomes
1110), invert 001 (so that it becomes 110), or invert 01 (so that it becomes 10),
with two’s complement we’ll get the same result. This is because only the left-
most digit becomes the “negative” place, and so everything works out. See for
yourself in the following examples.

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/jwpython2
http://forums.pragprog.com/forums/jwpython2

Here’s the binary number 1110:

-8 4 2 1 Places

-2: 1 1 1 0

That is, -8 + 4 + 2 = -2.

Now, here’s the binary number 110:

-4 2 1 Places

-2: 1 1 0

And here’s the binary number 10:

-2 1 Places

-2: 1 0

And that’s how the two’s complement number system works. Now you know!

• Click HERE to purchase this book now. discuss

• 5

http://pragprog.com/titles/jwpython2
http://forums.pragprog.com/forums/jwpython2

