
Extracted from:

OpenGL ES 2 for Android
A Quick-Start Guide

This PDF file contains pages extracted from OpenGL ES 2 for Android, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2013 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com




Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The Android robot is reproduced from work created and shared by Google and is used
according to terms described in the Creative Commons 3.0 Attribution License
(http://creativecommons.org/licenses/by/3.0/us/legalcode).

The unit circle image in Figure 43, from http://en.wikipedia.org/wiki/File:Unit_circle.svg, is used according
to the terms described in the Creative Commons Attribution-ShareAlike license, located at
http://creativecommons.org/licenses/by-sa/3.0/legalcode.

Day skybox and night skybox courtesy of Jockum Skoglund, also known as hipshot,
hipshot@zfight.com,http://www.zfight.com.

The image of the trace capture button is created and shared by the Android Open Source
Project and is used according to terms described in the Creative Commons 2.5 Attribution
License.

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-34-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—June 2013

http://pragprog.com
http://creativecommons.org/licenses/by/3.0/us/legalcode
http://en.wikipedia.org/wiki/File:Unit_circle.svg
http://creativecommons.org/licenses/by-sa/3.0/legalcode
http://www.zfight.com


This chapter will continue the work that we started in the last chapter. As
our game plan for this chapter, we’ll first load and compile the shaders that
we’ve defined, and then we’ll link them together into an OpenGL program.
We’ll then be able to use this shader program to draw our air hockey table to
the screen.

Let’s open AirHockey1, the project we started in the previous chapter, and
pick up from where we left off.

3.1 Loading Shaders

Now that we’ve written the code for our shaders, the next step is to load them
into memory. To do that, we’ll first need to write a method to read in the code
from our resources folder.

Loading Text from a Resource

Create a new Java source package in your project, com.airhockey.android.util, and
in that package, create a new class called TextResourceReader. Add the following
code inside the class:

AirHockey1/src/com/airhockey/android/util/TextResourceReader.java
public static String readTextFileFromResource(Context context,

int resourceId) {
StringBuilder body = new StringBuilder();

try {
InputStream inputStream =

context.getResources().openRawResource(resourceId);
InputStreamReader inputStreamReader =

new InputStreamReader(inputStream);
BufferedReader bufferedReader = new BufferedReader(inputStreamReader);

String nextLine;

while ((nextLine = bufferedReader.readLine()) != null) {
body.append(nextLine);
body.append('\n');

}
} catch (IOException e) {

throw new RuntimeException(
"Could not open resource: " + resourceId, e);

} catch (Resources.NotFoundException nfe) {
throw new RuntimeException("Resource not found: " + resourceId, nfe);

}

return body.toString();
}

• Click  HERE  to purchase this book now.  discuss

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/util/TextResourceReader.java
http://pragprog.com/titles/kbogla
http://forums.pragprog.com/forums/kbogla


We’ve defined a method to read in text from a resource, readTextFileFromResource().
The way this will work is that we’ll call readTextFileFromResource() from our code,
and we’ll pass in the current Android context and the resource ID. The Android
context is required in order to access the resources. For example, to read in
the vertex shader, we might call the method as follows: readTextFileFromRe-
source(this.context, R.raw.simple_fragment_shader).

We also check for a couple of standard scenarios we might run into. The
resource might not exist, or there might be an error trying to read the resource.
In those cases, we trap the errors and throw a wrapped exception with an
explanation of what happened. If this code fails and an exception does get
thrown, we’ll have a better idea of what happened when we take a look at the
exception’s message and the stack trace.

Don’t forget to press Ctrl-Shift-O  (DBO on a Mac) to bring in any missing
imports.

Reading in the Shader Code

We’re now going to add the calls to actually read in the shader code. Switch
to AirHockeyRender.java and add the following code after the call to glClearColor() in
onSurfaceCreated():

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
String vertexShaderSource = TextResourceReader

.readTextFileFromResource(context, R.raw.simple_vertex_shader);
String fragmentShaderSource = TextResourceReader

.readTextFileFromResource(context, R.raw.simple_fragment_shader);

Don’t forget to bring in the import for TextResourceReader. The code won’t compile
because we don’t yet have a reference to an Android context. Add the following
to the top of the class:

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
private final Context context;

Change the beginning of the constructor as follows:

AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
public AirHockeyRenderer(Context context) {

this.context = context;

We’ll also have to change AirHockeyActivity.java to pass in the Android context.
Open AirHockeyActivity.java and change the call to glSurfaceView.setRenderer() as
follows:

AirHockey1/src/com/airhockey/android/AirHockeyActivity.java
glSurfaceView.setRenderer(new AirHockeyRenderer(this));

• 8

• Click  HERE  to purchase this book now.  discuss

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyActivity.java
http://pragprog.com/titles/kbogla
http://forums.pragprog.com/forums/kbogla


rendererSet = true;

An Activity is an Android context, so we pass in a reference to this.

Keeping a Log of What’s Happening

As we start to write more involved code, it often helps a lot to see a trace of
what’s happening, just in case we’ve made a mistake somewhere. With
Android, we can use the Log class to log everything to the system log, which
we can then view in Eclipse using the LogCat view.

We don’t always want to log everything, so let’s add a new class called Logger-
Config to com.airhockey.android.util with the following code:

AirHockey1/src/com/airhockey/android/util/LoggerConfig.java
package com.airhockey.android.util;

public class LoggerConfig {
public static final boolean ON = true;

}

Whenever we want to log something, we’ll check to see if this constant is true
or false. To turn logging on or off, all we have to do is update the constant
and recompile the application.

3.2 Compiling Shaders

Now that we’ve read in the shader source from our files, the next step is to
compile each shader. We’ll create a new helper class that is going to create a
new OpenGL shader object, compile our shader code, and return the shader
object for that shader code. Once we have this boilerplate code in place, we’ll
be able to reuse it in our future projects.

To begin, create a new class, ShaderHelper, and add the following code inside
the class:

AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
private static final String TAG = "ShaderHelper";

public static int compileVertexShader(String shaderCode) {
return compileShader(GL_VERTEX_SHADER, shaderCode);

}

public static int compileFragmentShader(String shaderCode) {
return compileShader(GL_FRAGMENT_SHADER, shaderCode);

}

private static int compileShader(int type, String shaderCode) {

• Click  HERE  to purchase this book now.  discuss

Compiling Shaders • 9

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/util/LoggerConfig.java
http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
http://pragprog.com/titles/kbogla
http://forums.pragprog.com/forums/kbogla


}

We’ll use this as the base for our shader helper. As before, don’t forget to
bring in the imports. If you are having issues with the static imports, please
see Section 1.5, Using Static Imports, on page ?; we’ll follow this style for the
rest of the book.

In the next section, we’ll build up compileShader() step by step:

Creating a New Shader Object

The first thing we should do is create a new shader object and check if the
creation was successful. Add the following code to compileShader():

AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
final int shaderObjectId = glCreateShader(type);

if (shaderObjectId == 0) {
if (LoggerConfig.ON) {

Log.w(TAG, "Could not create new shader.");
}

return 0;
}

We create a new shader object with a call to glCreateShader() and store the ID
of that object in shaderObjectId. The type can be GL_VERTEX_SHADER for a vertex
shader, or GL_FRAGMENT_SHADER for a fragment shader. The rest of the code is
the same either way.

Take note of how we create the object and check if it’s valid; this pattern is
used everywhere in OpenGL:

1. We first create an object using a call such as glCreateShader(). This call will
return an integer.

2. This integer is the reference to our OpenGL object. Whenever we want to
refer to this object in the future, we’ll pass the same integer back to
OpenGL.

3. A return value of 0 indicates that the object creation failed and is analo-
gous to a return value of null in Java code.

If the object creation failed, we’ll return 0 to the calling code. Why do we
return 0 instead of throwing an exception? Well, OpenGL doesn’t actually
throw any exceptions internally. Instead, we’ll get a return value of 0 or
OpenGL will inform us of the error through glGetError(), a method that lets us

• 10

• Click  HERE  to purchase this book now.  discuss

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
http://pragprog.com/titles/kbogla
http://forums.pragprog.com/forums/kbogla


ask OpenGL if any of our API calls have resulted in an error. We’ll follow the
same convention to stay consistent.

To learn more about glGetError() and other ways of debugging your OpenGL
code, see Appendix 2, Debugging, on page ?.

Uploading and Compiling the Shader Source Code

Let’s add the following code to upload our shader source code into the shader
object:

AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
glShaderSource(shaderObjectId, shaderCode);

Once we have a valid shader object, we call glShaderSource(shaderObjectId, shaderCode)
to upload the source code. This call tells OpenGL to read in the source code
defined in the String shaderCode and associate it with the shader object referred to
by shaderObjectId. We can then call glCompileShader(shaderObjectId) to compile the shader:

glCompileShader(shaderObjectId);

This tells OpenGL to compile the source code that was previously uploaded
to shaderObjectId.

Retrieving the Compilation Status

Let’s add the following code to check if OpenGL was able to successfully
compile the shader:

final int[] compileStatus = new int[1];
glGetShaderiv(shaderObjectId, GL_COMPILE_STATUS, compileStatus, 0);

To check whether the compile failed or succeeded, we first create a new int
array with a length of 1 and call it compileStatus. We then call glGetShaderiv(shader-
ObjectId, GLES20.GL_COMPILE_STATUS, compileStatus, 0). This tells OpenGL to read the
compile status associated with shaderObjectId and write it to the 0th element of
compileStatus.

This is another common pattern with OpenGL on Android. To retrieve a value,
we often use arrays with a length of 1 and pass the array into an OpenGL
call. In the same call, we tell OpenGL to store the result in the array’s first
element.

Retrieving the Shader Info Log

When we get the compile status, OpenGL will give us a simple yes or no
answer. Wouldn’t it also be interesting to know what went wrong and where
we screwed up? It turns out that we can get a human-readable message by

• Click  HERE  to purchase this book now.  discuss

Compiling Shaders • 11

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
http://pragprog.com/titles/kbogla
http://forums.pragprog.com/forums/kbogla


calling glGetShaderInfoLog(shaderObjectId). If OpenGL has anything interesting to
say about our shader, it will store the message in the shader’s info log.

Let’s add the following code to get the shader info log:

AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
if (LoggerConfig.ON) {

// Print the shader info log to the Android log output.
Log.v(TAG, "Results of compiling source:" + "\n" + shaderCode + "\n:"

+ glGetShaderInfoLog(shaderObjectId));
}

We print this log to Android’s log output, wrapping everything in an if state-
ment that checks the value of LoggerConfig.ON. We can easily turn off these logs
by flipping the constant to false.

Verifying the Compilation Status and Returning the Shader Object ID

Now that we’ve logged the shader info log, we can check to see if the compila-
tion was successful:

AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
if (compileStatus[0] == 0) {

// If it failed, delete the shader object.
glDeleteShader(shaderObjectId);

if (LoggerConfig.ON) {
Log.w(TAG, "Compilation of shader failed.");

}

return 0;
}

All we need to do is check if the value returned in the step Retrieving the
Compilation Status, on page 11, is 0 or not. If it’s 0, then compilation failed.
We no longer need the shader object in that case, so we tell OpenGL to delete
it and return 0 to the calling code. If the compilation succeeded, then our
shader object is valid and we can use it in our code.

That’s it for compiling a shader, so let’s return the new shader object ID:

AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
return shaderObjectId;

Compiling the Shaders from Our Renderer Class

Now it’s time to make good use of the code that we’ve just created. Switch to
AirHockeyRenderer.java and add the following code to the end of onSurfaceCreated():

• 12

• Click  HERE  to purchase this book now.  discuss

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/util/ShaderHelper.java
http://pragprog.com/titles/kbogla
http://forums.pragprog.com/forums/kbogla


AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
int vertexShader = ShaderHelper.compileVertexShader(vertexShaderSource);
int fragmentShader = ShaderHelper.compileFragmentShader(fragmentShaderSource);

Let’s review the work we’ve done in this section. First we created a new class,
ShaderHelper, and added a method to create and compile a new shader object.
We also created LoggerConfig, a class to help us turn logging on and off at one
single point.

If you take a look again at ShaderHelper, you’ll see that we actually defined three
methods:

compileShader()
The compileShader(shaderCode) method takes in source code for a shader and
the shader’s type. The type can be GL_VERTEX_SHADER for a vertex shader, or
GL_FRAGMENT_SHADER for a fragment shader. If OpenGL was able to success-
fully compile the shader, then this method will return the shader object
ID to the calling code. Otherwise it will return zero.

compileVertexShader()
The compileVertexShader(shaderCode) method is a helper method that calls
compileShader() with shader type GL_VERTEX_SHADER.

compileFragmentShader()
The compileVertexShader(shaderCode) method is a helper method that calls
compileShader() with shader type GL_FRAGMENT_SHADER.

As you can see, the meat of the code is within compileShader(); all the other two
methods do is call it with either GL_VERTEX_SHADER or GL_FRAGMENT_SHADER.

• Click  HERE  to purchase this book now.  discuss

Compiling Shaders • 13

http://media.pragprog.com/titles/kbogla/code/AirHockey1/src/com/airhockey/android/AirHockeyRenderer.java
http://pragprog.com/titles/kbogla
http://forums.pragprog.com/forums/kbogla



