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Essay 4

The “Ivory Tower” Architect Is a Myth

I’ve never liked the idea that technical architects should stop
coding.

In physical architecture, architects perch in an ivory tower,
living in a world of only planning. They don’t hammer in
the nails or solder joints together. Requiring architects to do
the physical work of drilling holes and laying concrete is
simply impractical. Architecting and developing are two
distinct career tracks.

The Corporate Ladder Leads to Less Code

In our industry, we work our way up to the role of a techni-
cal architect by actually developing—bydoing the “physical”
work of building applications. But inmost organizations, as
wemove up the software development ladder, wewrite less
code. We immerse ourselves more with planning than with
discovering the problems on the front line. We concern
ourselves more about an overall vision and less about the
intimate details of code. As an industry, we’ve held on to
the notion that architects should plan and developers should
develop.

This creates the false perception that once we’ve reached a
certain level, programming is no longer where we’re most
valuable. Just leave the dirty work to the junior developers!
At the same time, it pushes lower-level programmers away
from thinking about the overall goals and direction of the
project. They’re asked to concentrate just on the implemen-
tation. The architect-developer model makes both parties
less accountable for the application as a whole.

When we split up roles into the somewhat arbitrary hierar-
chy of thosewho think about the technical “big picture” and
thosewho think only in if statements, for loops, andmarkup,
we fracture two disciplines that belong intimately together.
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Pure technical architects can take a guess at the best architec-
ture, the best design pattern, or the best practice. It’s only
when they’re knee-deep in code that they discover where
the real challenges exist. At the same time, the developer
who isn’t given the reins to think at a high level also doesn’t
get the chance to voice a second opinion. Often, it’s the guy
who’s doing the actual implementation who can see the
bumps ahead most clearly.

We’ve taken the architect-developer analogy too far. The
corporate ladder in the software industry needs a better
analogy.

To build a building, architects architect and developers
develop. Traditional architects knowhow to create elaborate
plans and specs in fine detail. But they don’t build. It’s sim-
ply not reasonable. The separation between thosewho think
at a high level and those whowork in the trenches is largely
for practical reasons.

In software, it doesn’t have to be that way. Great developers
can live both “in the trenches” and “at a high level” at the
same time. Sure, an architect might spend most of her time
thinking at a high level, but she should be involved in devel-
opment a little to get the full picture.

Making Time for Code

In many technical organizations, what I’ve proposed thus
far just isn’t feasible. Most technical architects have a full-
time job in meetings with other groups in the company.
They’re often brought in to client phone calls to discuss all
kinds of technical challenges that face a software project.
Where’s the time to code, anyway?

A fewmonths after I started one of my full-time web devel-
oper gigs, we hired a new senior architect. Adam came in
and set a very different tone among our group of youngweb
developers. Despite all the normal duties he took on in his
role, it was clear his passion lived in code. Immediately, I
felt like I was talking to just another programmer, albeit one
a lot smarter and wiser than I. Our architect-developer
relationship became my personal mentorship.
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On our first project, an extranet for a major law firm, Adam
mentioned something about code generation. To me, it
sounded a bit sci-fi. However, as I would soon find out, the
underlying server-side objects, queries, and methods I was
going to write by hand were mainly algorithmic. We could
largely deduce them from the extranet’s database schema.
Instead of plodding ahead with a brute-force approach to
development, Adam suggested I focus on building out
custom forms and screens while he began writing a code
generator. He did this for a fewweeks on his one-hour train
ride to and from the office each day. In a few weeks’ time,
we had a rudimentary but powerful tool to generate a lot of
the stuff I would’ve written manually.

Whatever time we lost with our little divergence into code
generation,we quickly recouped aswe began using the code
generator. Each timewe changed our database schema, he’d
run his little magic app that would rewrite all the code I
needed to keep building the application. Itwasn’t long before
the effort Adam made in writing his tool more than paid
back the cost in writing it. And this was a tool we could use
again and again.

So, while I was still very much the lead developer on the
project, Adam had a large stake in the development. If I
needed some different bits of algorithmic code, he’d work
on adding those features to the generator on train rides
home. The next day, I’d have a fresh set of code that I
wouldn’t have to ever write by hand again. Much of what I
learned in those first few months I keep with me today.

As you work your way up the programmer chain of com-
mand, from developer to architect, don’t forget that code is
the glue that binds each role. It may not be a train ride.
Maybe it’s an hour or two you can devote, at work, to only
writing code. You’ll seeways of committing yourself to code-
only time in Essay 23, Create “Off-Time” with Your Team, on
page ?. In the end, regardless of where you are in the
development hierarchy, keep coding. It’s where you’re most
valuable.
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