Extracted from:

The Developer’s Code

What Real Programmers Do

This PDF file contains pages extracted from The Developer’s Code, published
by the Pragmatic Bookshelf. For more information or to purchase a paper-
back or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing).
This is available only in online versions of the books. The printed versions
are black and white. Pagination might vary between the online and
printer versions; the content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas « Raleigh, North Carolina


http://www.pragprog.com

The

Developer's Code

What Real
Programmers Do

. Ka Wai Cheung

'\ Edited by Brian P. Hogan




\ Pragmatic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and The Pragmatic Programmers, LLC was aware of a trademark claim, the desig-
nations have been printed in initial capital letters or in all capitals. The Pragmatic
Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic
Bookshelf, PragProg and the linking g device are trademarks of The Pragmatic
Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result
from the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your
team create better software and have more fun. For more information, as well as
the latest Pragmatic titles, please visit us at http:/pragprog.com.

Cartoons courtesy of Mark Anderson, reproduced with permission of the artist.
http.://www.andertoons.com

The team that produced this book includes:

Brian P. Hogan (editor)
Kim Wimpsett (copyeditor)
David ] Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form, or by
any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of
the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-79-1

Printed on acid-free paper.
Book version: P1.0—February 2012


http://pragprog.com
http://www.andertoons.com

Essay 27

The Simplicity Paradox

What makes complexity a strange phenomenon is this:
Everyone. Loves. Simple. That's why people say “I just want
things to be simple.” Who says “I just want things to be
complicated”...ever?

I decided to find out. So, I looked it up on Google.

As of this writing, if you Google the phrase “I want things
to be simple,” you'll get approximately 954,000 matching
results. There is one unique matching results for the phrase
“I want things to be complicated.”

One. The only unique matching result? A blog post that I
wrote about this very subject in October 2009. Extract myself
from the annals of recorded human civilization, and appar-
ently no one has ever wanted or even thought about the idea
of voluntary complication.

Then, why do we run into this Jeffersonian problem of
complexity when we're building our own stuff? Why do the
things we produce often wind up festered in complication?
How do so many well-intentioned pieces of software matric-
ulate from simple idea to functional nightmare?

Simple Products Can Actually Be Hard to Build

Most ideas, simple at the surface, are viciously complicated
when we get into the details. Ideas, at a high level, are always
simple. Every business idea must be accompanied by the
elevator pitch: sixty seconds to get the message across from
beginning to end. We can’t pack complexity into a sixty-
second description.

When ideas start feeling complex, we leave the comforts of
Idea Land and enter the naked reality of implementation.
Once we dig into the details, we discover where all the holes
inlogic are. That’s just the nature of detail. An idea that hasn’t
been thought through completely (read: most of them) has

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/kcdc
http://forums.pragprog.com/forums/kcdc

little chance of surviving Complexityville at this point.
Rather than rethinking the idea altogether, it's sometimes
easier to plow through the problems with head down and
blinders up. Half-baked decisions are made, and features
are added all for the sake of preserving the sanctity of the
“big idea.” Then, complexity festers.

Simple Sometimes Seems Like Not Enough

If everyone likes simple software and most software isn't
simple to build, it would appear that the sweet spot for good
software would be both simple to use and simple to build.
It’s a win-win for both user and developer. But that kind of
software rarely exists in our world. There has to be some-
thing more to this mystery.

The answer lies in our own fear of inadequacy. When we
build something simply, it doesn’t feel like...enough. We
convince ourselves into believing our customer isn’t getting
his money’s worth. A simple thing that’s also simple to build
feels valueless. An idea that’s easily implemented is rarely
considered a “big idea” at all.

Venture capitalists don’t throw millions of dollars at simple
ideas. They throw all that money at the Donald Trump-esque
superlatives. Is it best-in-class? Is it innovative? Is it cutting-
edge? Oftentimes, these are just other ways of saying an idea
is complex enough to be worth its weight.

Herein lies the paradox. From a builder’s point of view, we
often equate the worth of software we build to its complexity,
and more complexity equals more value.

The view from the other side of the mirror is different. The
reality is 90 percent of our users use only 10 percent of the
features built in the average enterprise-level software. When
users can’t find the few functions they need because they’re
buried among the many features they don’t need, they either
take it out on their own perceived shortcomings or blame it
on the software itself. While builders and stakeholders see
simplicity as the shortcoming, users see complexity as the
shortcoming.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/kcdc
http://forums.pragprog.com/forums/kcdc

The Simplicity Paradox * 7

Atmy company, the natural urge to complicate is something
we resist constantly. We have to re-sell and re-pitch simple
to ourselves all the time.

Countless internal arguments about features in our own
software end up with incredibly simple solutions. Sometimes
the Ul just needs a small tweak in text. Other times, it’s just
a re-organization of links. Sometimes we’ll argue for hours
about a new feature before ultimately deciding the feature
just isn’t worth the complexity it adds.

The lesson is this. You don’t have to “merit” lengthy hours
of feature discussion with an equally large amount of feature
additions. It’s natural to feel that the amount of time you
spend on something should parallel the amount of measur-
able output you put into the product, regardless of the
benefit of that new feature. But free yourself from that
debilitating thought. Once you've let go of the vulnerable
feeling that simplicity cheapens your worth, you can finally
get on with building good software.

A simple solution shouldn’t be thought of as “not enough”
of anything. Sometimes it is exactly enough of everything.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/kcdc
http://forums.pragprog.com/forums/kcdc



