
Extracted from:

Secure Your Node.js Web Application
Keep Attackers Out and Users Happy

This PDF file contains pages extracted from Secure Your Node.js Web Application,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2016 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Secure Your Node.js Web Application
Keep Attackers Out and Users Happy

Karl Düüna

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Fahmida Y. Rashid (editor)
Potomac Indexing, LLC (index)
Linda Recktenwald (copyedit)
Dave Thomas (layout)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-085-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2016

https://pragprog.com
rights@pragprog.com

CHAPTER 5

Real knowledge is to know the extent of one’s ignorance.

 ➤ Confucius

Secure Your Database Interactions
In the last chapter we covered how to identify code injection attacks and ways
to defend your server and processes. We’ll continue by learning about database
security and especially about how most injection attacks target it.

The database is the heart of most modern web applications—without it the
applications are just empty husks. Books with covers but no pages. Application
data stored in the database, especially user information, is a prime target for
attackers. They want the passwords and personal information to log into
accounts on other sites. They desire financial and credit card information to
empty user bank accounts. They may want sensitive—or potentially embar-
rassing—information that can be used to blackmail users.

Knowledge is power.

Many companies suffered data breaches in 2014, and millions of individuals
saw their Social Security numbers, credit card numbers, and passwords
stolen. While many of these attacks, especially high-profile ones, used highly
sophisticated methods, some used a far simpler database injection attack.
This is similar to shell injection, except the targeted execution layer is the
database. As mentioned in the previous chapter, OWASP (Open Web Applica-
tion Security Project)1 considers database injection the top attack vector
against web applications.

We want to stop attackers from getting their hands on our users’ data. If the
attackers succeed, we lose our users’ trust, our business won’t be successful,
and we won’t be able to afford that new Tesla we like so much. We can’t have
that, so let’s spend this chapter preventing database injection and related
attack vectors.

1. https://www.owasp.org

• Click HERE to purchase this book now. discuss

https://www.owasp.org
http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec

You can work work through the examples in this chapter with MySQL,2

PostgreSQL,3 and MongoDB4 databases. We’ll walk through the data model
and table schemas together. Setting up the database and account is out of
scope for this book, so you should reference your database documentation
to get started.

Start with the Basics: Set Up the Database
Let’s start from the beginning—your application has to successfully connect
to the database before you can do anything. Let’s make sure you don’t fumble
the ball even before you cross the line of scrimmage.

Any database that you work with, and it doesn’t matter if we’re talking about
MySQL, Mongo, Redis, or any other database system, should be configured
to use authenticated users. Sometimes people don’t bother with user accounts
and let everyone (including applications) connect to the database without a
password. They typically block outside connections, which is a good thing to
do. Unfortunately, it’s not sufficient, even if the database lives on the same
machine.

Yes, blocking outside connections narrows the attack surface significantly.
But the attacker can bypass this restriction by gaining access to one of the
whitelisted machines or the IP addresses. If I’m running a Redis database
server on my machine with default settings enabled—no authentication—then
all the attacker has to do is somehow get onto my machine. It doesn’t matter
if the attacker is using an unprivileged account since there’s no barrier to
connecting to the database. Voila! Full access to every database and all the
data.

Imagine your server as an apartment building, individual apartments as
databases, and each room in the apartment as a table in the database. Just
because you have a lock on the front door of the building does not mean you
don’t want locks for each apartment. It would still disturb you very much if
someone from the street managed sneak through the front door and then
could roam around the building visiting every room and looking at your things.
Just because someone has access to the server doesn’t mean they should
have access to all the data in each database.

It’s clear that proper authentication is an important aspect of defense. It will
be harder for attackers to pull off a successful attack if the application is

2. http://www.mysql.com/
3. http://www.postgresql.org/
4. http://www.mongodb.org/

Chapter 5. Secure Your Database Interactions • 6

• Click HERE to purchase this book now. discuss

http://www.mysql.com/
http://www.postgresql.org/
http://www.mongodb.org/
http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec

smart about who it lets in, who it keeps out, and who is allowed to do what.
Setting up authentication also lets you follow the principle of least privilege
to fine-tune different levels of access for each account. You may want to
revisit Follow the Principle of Least Privilege, on page ? for a refresher.

Our theoretical web application has three separate database accounts for
users—guest, authenticated, and admin; see the following graphic.

• Guest users can only read articles on the site—so the guest database
account needs only read access for the database tables.

• Authenticated users can read and write articles, as well as post com-
ments—meaning the authenticated database account should have read and
write access on tables related to articles and comments.

• Admin users can add new users and do other administrative tasks. The
admin account on the database has the highest privilege level, with
read/write privileges on most, if not all, tables.

You might wonder why you need to go through the trouble of having separate
database accounts if you already have separate user roles. Suppose you have
a database injection vulnerability somewhere in the guest section of the
application. Attackers who exploit this hole won’t be able to cause as much
damage because the guest database user has only read privileges on the tables.

• Click HERE to purchase this book now. discuss

Start with the Basics: Set Up the Database • 7

http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec

Your admin account may not even need all the privileges it currently has. You
probably would never drop tables from the web application, for example.
Remove that privilege from the admin database account and the attacker won’t
be able to use code injection to delete data. You’d still have elevated privileges
as the admin user when connected directly to the database, which is all you
need.

Defining multiple accounts in the database with various levels of privileges
is a good thing, but you need to use them. Look at the following code snippet
to see an example how you could manage multiple connections to the
database:

chp-5-database/mysql-multiple-connections.js
// Set up guest connection
var guestConnection = mysql.createConnection({

host : 'localhost',
user : args.gu,
database : args.d,
password : args.gp,

// Set for testing, do not do unless you have a good reason
multipleStatements: true

});
guestConnection.connect();

// Set up admin connection
var adminConnection = mysql.createConnection({

host : 'localhost',
user : args.au,
database : args.d,
password : args.ap,

// Set for testing, do not do unless you have a good reason
multipleStatements: true

});
adminConnection.connect();

// Middleware for checking the logged in status
app.use(function (req, res, next) {

// If we have an admin session then attach adminConnection
if(req.session && req.session.isAdmin) {

req.db = adminConnection;
}
// Otherwise attach guestConnection
else {

req.db = guestConnection;
}
next();

});

Chapter 5. Secure Your Database Interactions • 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-5-database/mysql-multiple-connections.js
http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec

You now have a lock on your database, and, more importantly, you should
now understand why you need one. The lock will deter people trying to snoop
through data they shouldn’t be allowed to see, which will keep the clients
happy. And that keeps you happy.

Let’s take a quick look at another important data-separation paradigm that
you should know besides simple role-based connection—multi-tenancy.

Separate Databases for Better Security
Many web applications serve as platforms for multiple clients at the same
time. Depending on the application, this will involve storing business data or
logic in the database. For example, you may have a CRM system where clients
store their own records, connections, and billing information. You need to
safely separate the data so that clients can’t access each other’s data. There
are many approaches ranging from totally isolated databases to fully shared
ones, but they tend to fall somewhere along the spectrum, as shown here.

The security of these methods can vary and depend on other development
and infrastructure requirements. But let’s look at each one in detail.

First up is having separate databases
for everyone, as shown in the graphic.
This is the most isolated approach.
Every client has a separate database
for its data and each client can cus-
tomize the data structure for its own
needs. It can be more secure, but it
comes with higher infrastructure
costs. Databases take up space (an
empty MongoDB database takes 32
MB, for example), and there’s only so
much space available on a server.

• Click HERE to purchase this book now. discuss

Separate Databases for Better Security • 9

http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec

Completely isolating your tenants is a good approach when you have strict
security needs and clients who are willing to pay extra for security. You can
use this approach with most SQL and NoSQL databases (including MongoDB).

The middle approach is to use the
same database but separate the
schemas (tables/collections) for each
client, as the graphic shows. Each
tenant has access to only its own set
of tables. Like the isolated approach,
each tenant can customize the data
structures and keep database connec-
tion levels separate from everyone else.

This method makes backups tricky.
In the isolated approach, you back up
and restore a single tenant’s database without affecting anyone else. Here,
you have to back up all the tables together, regardless of client. Restoring a
single tenant’s data is a challenge as you don’t want to affect others.

Neither can you fully use this approach in MongoDB because it doesn’t have
collection-level access control. While there are modules like mongoose-multitenant,5

you still can’t control connection access at the collection level. You’d miss
out on most of the security benefits of this approach, and MongoDB has
limits on how many collections you can create in a single database as well.

The last approach is the most common—storing all the clients’ data in the
same database and sharing the database schema. The data is separated by
providing a unique tenant identifier for each row. It’s the cheapest approach
because it has the lowest infrastructure requirements, but it has the highest
implementation cost for security. You have to handle security in your code
and manage all the data-separation mechanisms yourself.

Most applications start out from a shared model, since businesses generally
start thinking about multi-tenancy only after the application has gotten large
enough. Or they have to comply with regulatory requirements. There’s no
best approach, because that depends on your specific needs. I recommend
generally starting out with the shared approach and eventually graduating
to the isolated approach when you can.

Next, let’s look at how to mitigate attacks against data stored in your database
(or databases).

5. https://www.npmjs.com/package/mongoose-multitenant

Chapter 5. Secure Your Database Interactions • 10

• Click HERE to purchase this book now. discuss

https://www.npmjs.com/package/mongoose-multitenant
http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec

Identify Database Injection Points in Your Code
We briefly talked about database injection earlier. It’s a variation of code
injection, but the intended target is the back-end database and not the
application server. Let’s look at this widely used attack in detail and discuss
ways to prevent it.

If an application has code injection issues, it means the application is not
correctly validating all input fields on the site. The same thing applies to
database injection. Attackers enter a series of database commands into the
application’s input fields (such as a textbox in a blog’s comment form) to trick
the application into executing the commands within the database. If the
application builds its database queries by concatenating user input with
hardcoded strings instead of using a decent ORM (object-relational mapper)
and neglects to properly escape input data, then the attacker succeeds.

Let’s take a look at what a database injection flaw looks like. Make sure you
understand what’s happening here, because we’ll revisit this again in later
chapters.

For the following examples you’ll need a MySQL database. For all database
examples, we’ll use the minimist6 module to parse command-line argu-
ments—which we’ll use to supply the database connection information.

chp-5-database/mysql-exploitable.js
var mysql = require('mysql');
var express = require('express');
var args = require('minimist')(process.argv);

if(!args.u || !args.d || !args.p) {
console.log('This example requires the ' +
'-u (user), ' +
'-d (mysql db) and ' +
'-p (password) command line variables');

process.exit();
}

var connection = mysql.createConnection({
host : 'localhost',
user : args.u,
database : args.d,
password : args.p,
multipleStatements: true // This is so we can execute multiple statements

});

6. https://github.com/substack/minimist

• Click HERE to purchase this book now. discuss

Identify Database Injection Points in Your Code • 11

http://media.pragprog.com/titles/kdnodesec/code/chp-5-database/mysql-exploitable.js
https://github.com/substack/minimist
http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec

connection.connect();

var app = express();

app.get('/', function (req, res) {
res.send('ok');

});

app.get('/:name', function(req, res, next){

// Query the account based on url parameters
// As you can see we use no validation on the name parameter
connection.query('SELECT * FROM accounts WHERE name="' + req.params.name + '"',

function(err, rows, fields) {
if (err) {

next(err);
return;

}
res.send(JSON.stringify(rows));

});
});

app.listen(3000);

Let’s ignore the fact that this application doesn’t perform any user validation.
You now have an application that displays the account information you
requested via the name parameter in JSON format. The database dump would
look like the following:

CREATE TABLE `accounts` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`name` varchar(255) NOT NULL,
`email` varchar(255) NOT NULL,
PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=3 ;

INSERT INTO `accounts` (`id`, `name`, `email`) VALUES
(1, 'karl', 'karl@dyyna.com'),
(2, 'juhan', 'juhan@gmail.com');

When you visit the URL /karl in the browser, you should see the following
response:

[{
"id": 1,
"name": "karl",
"email": "karl@dyyna.com"

}]

Chapter 5. Secure Your Database Interactions • 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec

We could also construct the following URL to send the following SQL com-
mands in a single line: /";SELECT%20*%20FROM%20accounts%20WHERE%20"1"="1. You
can see here how the URL turns into two database queries:

SELECT * FROM accounts WHERE name="";SELECT * FROM accounts WHERE "1"="1";`

The first statement will return nothing because we didn’t provide a value for
name. However, the second statement will dump all the accounts stored in the
database:

[
[], // Our first query that selected nothing, since we terminated it
[{

"id": 1,
"name": "karl",
"email": "karl@dyyna.com"

}, {
"id": 2,
"name": "juhan",
"email": "juhan@gmail.com"

}]
]

A select query is only the beginning of what we can do. Imagine the damage
we could cause with /";DROP%20TABLE%20accounts;, which would delete the accounts
table altogether. A database injection lets someone modify the commands
sent to the database in order to view or modify the saved data. So how do you
protect your application?

Good News About Running Multiple Queries in MySQL

The good news is that one of the most popular MySQL drivers for
Node.js, node-mysql,7 disables by default the ability to execute
multiple commands in a single query. This makes SQL injection
attacks much harder to launch on web applications if you use this
module. The module won’t let the attacker terminate the original
query to start a separate malicious one. But for the sake of provid-
ing examples, we’ll enable the multiple queries option in node-mysql.

Avoid SQL Injection Attacks
As you just saw, attackers can cause a lot of damage with database injection.
We’ll now look at four main defense methods to protect against this kind of
attack: controlled error messages, input validation, escaping, and prepared
statements.

7. https://github.com/felixge/node-mysql

• Click HERE to purchase this book now. discuss

Avoid SQL Injection Attacks • 13

https://github.com/felixge/node-mysql
http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec

Database injection attacks are divided into two types: blind and normal SQL
injection. In normal SQL injection the attacker will see helpful error messages
and/or the result of the attack on the web page. With blind SQL injection,
the attacker sees only generic error messages if something is not valid.

In case of blind SQL injection attackers frequently append true-false state-
ments such as and 1=2 or and 1=1 at the end of the query to see the different
messages associated with successful and unsuccessful attempts. Blind SQL
injection requires the attacker to collect the information needed one piece at
a time.

The mechanics of defending are the same, but blind SQL injection is much
harder and more time consuming for the attacker to pull off. This is why your
first line of defense is to handle errors properly, as previously discussed in
Limit Error Messages in Production, on page ?. Forcing the attacker to spend
more time determining whether there is a vulnerability and how to get at the
data benefits you.

The second step is validating user input. You’ll have to verify that user-entered
data falls within expected parameters and is not malicious. Say you’re man-
ually constructing MySQL commands by combining user-entered data with
queries hardcoded within the application code. This approach is very important
if you’re using a database driver and handling database queries this way. You
have to be attentive when checking every input to make sure users aren’t
entering malicious strings. The best approach is whitelisting, or allowing only
types of data you expect to see.

Let’s go back to the previous example and see how you can validate user
input:

chp-5-database/mysql-exploitable-validation.js
var connection = mysql.createConnection({

host : 'localhost',
user : args.u,
database : args.d,
password : args.p,
multipleStatements: true // This is so we can execute multiple statements

});
connection.connect();

var app = express();

app.get('/', function (req, res) {
res.send('ok');

});

Chapter 5. Secure Your Database Interactions • 14

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-5-database/mysql-exploitable-validation.js
http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec

app.get('/:name', function(req, res, next){
// Validate that the name has only letters➤

if(req.params.name.match(/[^a-zA-Z]/)) {➤

// It didn't so send a Bad Request response➤

res.sendStatus(400);➤

return;➤

}➤

// Query the account based on url parameters
connection.query('SELECT * FROM accounts WHERE name="' + req.params.name + '"',

function(err, rows, fields) {
if (err) {

next(err);
return;

}
res.send(JSON.stringify(rows));

});
});

This is restrictive but efficient. The thing is, you can’t take this approach all
the time because you don’t always have such a clear understanding of what
would be considered valid input.

Let’s move on to the third approach, escaping. This means that all characters
that can potentially break the query are formatted in such a way that the
application doesn’t treat them as part of a command.

This is a widely used method and many libraries, including node-mysql,
provide ready-to-go functions for escaping well-known problem characters.
You can utilize connection.escape(), which is the Node equivalent of PHP’s
mysqli_escape_string(). This way you don’t have the hassle of trying to write the
function yourself since you can just use a well-tested one.

So modify your vulnerable example again to escape the input string:

chp-5-database/mysql-exploitable-fixed.js
var connection = mysql.createConnection({

host : 'localhost',
user : args.u,
database : args.d,
password : args.p,
multipleStatements: true // This is so we can execute multiple statements

});
connection.connect();

var app = express();

app.get('/', function (req, res) {
res.send('ok');

});

• Click HERE to purchase this book now. discuss

Avoid SQL Injection Attacks • 15

http://media.pragprog.com/titles/kdnodesec/code/chp-5-database/mysql-exploitable-fixed.js
http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec

app.get('/:name', function(req, res, next){
// Query the account based on url parameters➤

var query = 'SELECT * FROM accounts WHERE name="' +➤

connection.escape(req.params.name) + '"';➤

➤

connection.query(query, function(err, rows, fields) {➤

if (err) {
next(err);
return;

}
res.send(JSON.stringify(rows));

});
});

The previous attack string no longer works because the quotation marks are
escaped. The application now knows the quotes should be treated as part of
a string and not as part of a command.

The final method is to use prepared statements; see the following illustration.
Here, you completely separate the command and data parts of the query by
sending them to the database separately. This leaves no room for misinterpre-
tation and is a good way to protect against injection. As a bonus, it also pro-
vides a speed boost on queries that run many times because you can reuse
the same procedure.

Chapter 5. Secure Your Database Interactions • 16

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec

Try out this technique:

chp-5-database/mysql-exploitable-fixed-prep.js
var connection = mysql.createConnection({

host : 'localhost',
user : args.u,
database : args.d,
password : args.p,
multipleStatements: true // This is so we can execute multiple statements

});
connection.connect();

var app = express();

app.get('/', function (req, res) {
res.send('ok');

});

app.get('/:name', function(req, res, next){

// Query the account based on url parameters➤

connection.query('SELECT * FROM accounts WHERE name= ?', [req.params.name],➤

function(err, rows, fields) {➤

if (err) {
next(err);
return;

}
res.send(JSON.stringify(rows));

});
});

Prepared statements are by far the best solution against SQL injection attacks
and are the favored approach. The second-best option is to use proper
escaping, which is the method node-mysql uses currently. Whitelisting, while
very effective, is the least favored. That’s because it’s time consuming to
whitelist all possible endpoints and sometimes you need to have special
characters in the query, which makes this approach less effective. Whichever
method you use in your application, don’t forget to limit the error messages.

Prepared like node-mysql

While you can use prepared statement syntax with node-mysql,
such syntax is internally executed using connection.escape() and is
not prepared statements. node-mysql28 is a library that does
support prepared statements, and hopefully they will soon be
available in node-mysql as well.

8. https://github.com/sidorares/node-mysql2

• Click HERE to purchase this book now. discuss

Avoid SQL Injection Attacks • 17

http://media.pragprog.com/titles/kdnodesec/code/chp-5-database/mysql-exploitable-fixed-prep.js
https://github.com/sidorares/node-mysql2
http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec

Now that you know the three ways to protect yourself when constructing
database commands, you can feel confident that you aren’t such an easy
target for attackers. You might be able to order that Tesla after all.

Watch Out for Sneaky Issues
Before you start patting yourself on the back for a job well done, you still
have a few hurdles left to address. Developers often use an ORM (object-
relational mapper) instead of constructing commands manually, and that
can introduce some unexpected behavior.

Numerous ORMs are available for Node.js and various databases. Let’s look
at one of the popular ORM mappers for MySQL, MariaDB, SQLite, and Post-
greSQL in Node.js—Sequelize.9 While ORMs typically implement internal
escaping based on model properties and types, Sequelize does not always
perform thorough input cleaning. Some inputs are left vulnerable and can be
used to construct malicious SQL statements. It would be foolish to assume
the ORM is going to do something without checking. Trust but verify.

ORMs by their nature introduce overhead into your application, because they
construct interfaces around your data structures. This can lead to serious
performance issues in some cases. So using an ORM isn’t always the best
solution. But if you’re going to use ORMs, you need to test how they handle
input cleaning. We will look at Sequelize.

First, let’s do the setup:

chp-5-database/sequelize-example.js
'use strict';

var express = require('express');
var Sequelize = require('sequelize');
var args = require('minimist')(process.argv);

if(!args.u || !args.d || !args.p) {
console.log('This example requires the ' +
'-u (user), ' +
'-d (mysql db) and ' +
'-p (password) command line variables');

process.exit();
}

// Define connection to DB
var sequelize = new Sequelize(args.d, args.u, args.p, {

9. http://sequelizejs.com/

Chapter 5. Secure Your Database Interactions • 18

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-5-database/sequelize-example.js
http://sequelizejs.com/
http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec

dialect: 'mysql',
port: 3306

});

// Define user model
var User = sequelize.define('user', {

company: Sequelize.STRING,
username: Sequelize.STRING

});

Now that we’ve done the database connection part, let’s define the application
paths:

chp-5-database/sequelize-example.js
var app = express();

app.get('/', function (req, res) {
res.send('ok');

});

// Define a path where we can ask users by
// company name and optionally limit the response
app.get('/:company/:limit*?', function(req, res, next){

console.log(req.params);
User.findAll({

where: {
company: req.params.company

},
limit: req.params.limit || 0

}).then(function(users) {
res.send(JSON.stringify(users));

}).catch(next);
});

Finally, we create our example database entries and set the ball rolling:

chp-5-database/sequelize-example.js
// Set up the database
sequelize

.authenticate()

.then(function() {
// Sync the models
return sequelize.sync({ force: true });

})
.then(function () {

// Push example data into the database
return User.bulkCreate([

{ username: 'karl', company: 'nodeswat' },
{ username: 'harri', company: 'nodeswat' },
{ username: 'jaanus', company: 'nodeswat' },

• Click HERE to purchase this book now. discuss

Avoid SQL Injection Attacks • 19

http://media.pragprog.com/titles/kdnodesec/code/chp-5-database/sequelize-example.js
http://media.pragprog.com/titles/kdnodesec/code/chp-5-database/sequelize-example.js
http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec

{ username: 'jaak', company: 'mektro' }
]).then(function() {

// We are set up so start listening
app.listen(3000);

});
})
.catch(function (err) {

console.log('Unable to connect to the database:', err)
process.exit();

});

Now when we send the URL /nodeswat we should get the following data dump:

[{
"id": 1,
"company": "nodeswat",
"username": "karl",
"createdAt": "2014-01-24T11:33:01.000Z",
"updatedAt": "2014-01-24T11:33:01.000Z"

}, {
"id": 2,
"company": "nodeswat",
"username": "harri",
"createdAt": "2014-01-24T11:33:01.000Z",
"updatedAt": "2014-01-24T11:33:01.000Z"

}, {
"id": 3,
"company": "nodeswat",
"username": "jaanus",
"createdAt": "2014-01-24T11:33:01.000Z",
"updatedAt": "2014-01-24T11:33:01.000Z"

}]

Let’s take a look at the actual database command that was executed. So far,
so good:

SELECT * FROM `users` WHERE `users`.`company`='nodeswat';

When we add in malicious code as shown in the following URL, /nodeswat'";,
we see that the quotation marks are properly escaped (as expected!):

SELECT * FROM `users` WHERE `users`.`company`='nodeswat\'\";';

When we use the limit parameter in the URL like
/nodeswat/1;DROP%20TABLE%20users, we get an error. But let’s look at the final
command that was constructed. As you can see, this could have gone badly:

SELECT * FROM `users` WHERE `users`.`company`='nodeswat' LIMIT 1;DROP TABLE users;

The only reason the command didn’t execute and drop the users table was
that Sequelize uses node-mysql as its MySQL driver. As you saw earlier, node-

Chapter 5. Secure Your Database Interactions • 20

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec

mysql disables by default the ability to run multiple statements off a single
command. But PostgreSQL’s driver doesn’t have that setting, so a similar
attack will succeed on that database. You’ll need to do validation or change
the configuration if you’re working with PostgreSQL or other databases that
don’t disable multiple queries by default:

var sequelize = new Sequelize(args.d, args.u, args.p, {
dialect: 'postgres',
port: 5432

});

Here, the solution is to either not allow the user to set the limit parameter or
validate that you’re dealing with a number.

The moral of this example is that you must be ever vigilant when using third-
party modules and talking to the database. You should always limit user
interaction with your database and test what users are allowed to do. Knowing
this makes you security conscious and in a better position to write secure
applications.

Mitigate Injection Attacks in NoSQL Databases
MongoDB and CouchDB10 are widely used alternatives to relational databases
when building Node.js applications. They don’t use a query language like SQL
for mapping the data—hence the name NoSQL. Instead they have their own
methods and queries. You may now think that using NoSQL means SQL
injection is not a problem for you. Alas, that isn’t quite true.

Strictly speaking, SQL injection doesn’t affect NoSQL databases. The thing
is, SQL injection isn’t the only form of database injection, and there are other
ways to inject commands despite not using the traditional SQL syntax. These
NoSQL injection attacks execute within a procedural language rather than
in the declarative SQL language, so the potential impact of these attacks is
greater.

In the following examples we’ll be using MongoDB,11 since it’s the most pop-
ular NoSQL database in use with Node.js.

The first security issue for NoSQL databases is that by default they don’t have
any authentication. Instead, they filter connections only to localhost. As you
saw in Start with the Basics: Set Up the Database, on page 6, that’s not
necessarily a good thing.

10. http://couchdb.apache.org/
11. http://www.mongodb.org

• Click HERE to purchase this book now. discuss

Mitigate Injection Attacks in NoSQL Databases • 21

http://couchdb.apache.org/
http://www.mongodb.org
http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec

Let’s see how to connect to our configured MongoDB using a password with
one of the most (if not the most) popular MongoDB ORMs in use—Mongoose:12

mongoose.connect('mongodb://user:pass@localhost:port/database');

The following example uses mongoose and express to illustrate how MongoDB
can be susceptible to attack:

chp-5-database/mongoose-example.js
'use strict';

var express = require('express');
var mongoose = require('mongoose');
var args = require('minimist')(process.argv);

if(!args.d) {
console.log('This example requires the -d (mongoose db) command line variable');
process.exit();

}

// Connect to mongoose db
mongoose.connect(args.d);
mongoose.connection.on('error', function (err) {

console.error('connection error:' + err);
process.exit();

});

// Define user model
var userSchema = new mongoose.Schema({

username: { type: String, required: true, index: { unique: true } },
company: { type: String, required: true },
age: { type: Number, required: true}

});
var User = mongoose.model('User', userSchema);

User.remove().exec(); // Delete all previous Users.

var app = express();

app.get('/', function(req, res){
res.send('ok');

});

app.get('/:age', function (req, res, next) {
// Lets implement a completely unvalidated way to query the documents
User.find({ $where: 'this.age < ' + req.params.age }, function (err, users) {

if(err) {
next(err);

12. http://mongoosejs.com/

Chapter 5. Secure Your Database Interactions • 22

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/kdnodesec/code/chp-5-database/mongoose-example.js
http://mongoosejs.com/
http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec

return;
}
res.send(JSON.stringify(users));

});
});
// Fill database
User.create([

{ username: 'karl', company: 'nodeswat', age: 25 },
{ username: 'harri', company: 'nodeswat', age: 35 },
{ username: 'jaanus', company: 'nodeswat', age: 45 },
{ username: 'jaak', company: 'mektro', age: 55 }

], function (err) {
if(err) {

console.error(err);
process.exit(1);

}
console.log('Listening');
app.listen(3000);

});

With this application, you can ask for a list of users under a specific age.
Constructing a URL with /40 would result in a data dump of some users:

[{
"username": "karl",
"company": "nodeswat",
"age": 25,
"_id": "52e25cc4251a7ce88b050e75",
"__v": 0

}, {
"username": "harri",
"company": "nodeswat",
"age": 35,
"_id": "52e25cc4251a7ce88b050e76",
"__v": 0

}]

The user input was not validated before constructing the search, which means
attackers can add malicious code into the statement. MongoDB won’t be
affected by SQL statements, but it does support JavaScript commands in its
queries. The attacker can execute JavaScript statements on the database
layer. It may look something like this URL, which would trigger a ten-second
loop in the database:

/40;var%20date=new%20Date();%20do%7BcurDate%20=%20new%20Date();%7Dwhile(curDate-
date<10000);

Keep in mind that this is a simple example; the attacker has access to the
whole JavaScript syntax to craft a more complicated query. Because most

• Click HERE to purchase this book now. discuss

Mitigate Injection Attacks in NoSQL Databases • 23

http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec

NoSQL databases don’t support prepared statements, you’re left with two
solutions—validation and escaping. Be sure to use them liberally.

You just saw that NoSQL is not inherently safer just because it does not have
SQL. When constructing complex queries with user input, make sure the
data falls within the narrowly defined parameters of your query, just as you
would with a SQL database.

Wrapping Up
Databases are an integral and powerful part of a web application, and you
must secure all transactions in order to protect your clients’ data. As you
learned in this chapter, you must secure your database connections and
limit access privileges where you can. You must also be vigilant about
escaping and validating all user input that comes into contact with the
database, even if it’s a NoSQL database. Implementing these two steps will
greatly increase the security of your data.

Now that you’ve secured how the application communicates with the database,
the attackers will find it harder to target your application. Don’t get too cozy
just yet, because there are many more attack vectors to defeat out there. Next
we’ll move on to another common issue in web application design that also
affects databases: concurrency. Let’s go.

Chapter 5. Secure Your Database Interactions • 24

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec

