
Extracted from:

Secure Your Node.js Web Application
Keep Attackers Out and Users Happy

This PDF file contains pages extracted from Secure Your Node.js Web Application,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2016 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com




Secure Your Node.js Web Application
Keep Attackers Out and Users Happy

Karl Düüna

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina



Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Fahmida Y. Rashid (editor)
Potomac Indexing, LLC (index)
Linda Recktenwald (copyedit)
Dave Thomas (layout)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-085-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2016

https://pragprog.com
rights@pragprog.com


CHAPTER 2

By failing to prepare, you are preparing to fail.

  ➤ Benjamin Franklin

Set Up the Environment
You should now have a better understanding of how your tools work and,
more importantly, how they can cause problems if not used correctly. In this
chapter, we’ll start working on the foundation—the server. There are many
things to secure before we can write Node.js code.

You’re looking at the title and wondering why I’m talking about the server
instead of Node.js. Application security is a layered concept—we start from
the outside and first secure our environment, network, and other auxiliary
systems before we can even start work on the core application, as the following
illustration shows.

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec


Why? Because if we don’t secure the surrounding layers, the inner defenses
in our application matter little. We can’t just put a password on a computer
and say that computer is safe from thieves. We first need to lock the front
door, right? That password won’t stop a thief from simply taking the computer
and walking out the door.

Every application has to live somewhere—a server, a phone, a device—an
environment. Before we can secure higher levels of the stack and adopt secure
coding practices, we must work our way up.

In this chapter, we’ll discuss the principle of least privilege, how to properly
configure our server, and ways to manage different environments. Yes, this
isn’t writing code, but good security starts with making sure the server is set
up correctly. And while some of these topics might seem basic to you, I’ve
seen time and time again that often it’s the basics that get overlooked.

So, let’s get started.

Follow the Principle of Least Privilege
The principle of least privilege (PLP) will help us design better security
throughout the application.

In PLP, every abstraction layer in an application—program, user, process—has
access only to the information and resources that it needs to complete its
task. If the application layer can’t access privileged resources, then it can’t
be abused to give attackers access to those resources. PLP limits damages in
case of a breach.

A common example of PLP can be seen in the operating systems; as a user,
you have a regular account for working with installed applications. When you
want to do something that requires higher privileges, such as installing an
application, you see a prompt asking for higher privileges. This kind of man-
ual privilege escalation system makes it harder for attackers to execute
malicious programs on victims’ machines.

We can also see PLP in web applications, where the server process doesn’t
have read access outside the web application directory. This prevents
attackers who somehow found a loophole in the server configuration from
abusing it to read and modify other files on the server.

In reality, true PLP is practically impossible because it’s extremely difficult
to determine all the resources that a program needs and at what point in
time. However, even a moderate implementation of the concept increases
application security by a great deal.

Chapter 2. Set Up the Environment • 6

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec


From our web application standpoint, we have the following rules:

• The web application should not be run with root privileges. It should instead
use a limited account that has access to only the required resources.

• The database account should not be a root account. The account should
have limited privileges over the database tables. We touch upon this in
Chapter 5, Secure Your Database Interactions, on page ?.

• The users of the web application should be given the minimum set of
privileges they need.

Following this simple list while developing the application greatly increases
the security and fault tolerance because the impact of all errors and vulnera-
bilities is contained within their specific areas.

Start with the Basics: Secure the Server
PLP isn’t enough if the hardware housing our application is riddled with holes.
Attackers are looking for any way in and will target both the production and
development servers hosting the application. If we forget to secure the server
itself in the rush to code a secure application, all the things we’re going to
discuss in later chapters will no longer matter.

What good is session management in our application if the server has a weak
password? Does it matter if we implement a rock-solid authentication scheme
if the server is running old and vulnerable software? No. Remember, we need
to lock the front door before we password-protect the computer.

Since this book is about Node.js security and not server security, we’ll keep
things brief and basic.

The first step is authentication, because it’s the most important aspect of
server security. Keep the following guidelines in mind for a secure authenti-
cation scheme:

• Do not use the root account all the time. Using an ordinary account and
sudo to elevate permissions when required minimizes the attack vector by
limiting the timeframe and execution rights.

• Do not give the same account to everyone. It makes it hard to separate
permissions of individuals or determine a point of attack later on.

• Use dedicated machines. Having the production site running on a machine
otherwise used for email or web browsing opens up so many attack vectors
that anything that you might save on hardware would be gobbled up by
balancing security.

• Click  HERE  to purchase this book now.  discuss

Start with the Basics: Secure the Server • 7

http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec


• Keep access to the production server to a minimum. There’s no reason for
someone from accounting to have root access to the production server
hosting your web application. Let access be limited to the minimum
number of people possible.

• Change the default password or use key-based authentication. Most cloud
services provision machines with default root accounts and send the
passwords by email. Change those!

The application server should be single purposed. Running a pet development
app on the same server as a business-critical application is a great idea—if
you want to sabotage your production environment. (That was sarcasm.) Don’t
do it, because you’re just offering up a buffet of attack vectors to break into
the server and the resident applications.

Set up a proper firewall. Block all network traffic that should not be occurring
in the first place. If necessary, you can also set up a reactive firewall to block
denial-of-service attacks when they occur.

Another basic step, but an important one, is to make sure all the software
installed on the server is up to date. If the history of computers has shown
us anything, it’s that complex software without bugs is like a miracle—some
say they have seen it, some even say that they have made such a program,
and the rest of us just shake our head in disbelief. Keep your system up to
date to limit exposure time to vulnerabilities as they’re found.

In 2014 alone, two serious bugs were found in commonly used networking
software and required a software update for almost all servers around the
world: Heartbleed1 and ShellShock.2 Make sure you’re running updated
server software to ensure these two and other security bugs don’t affect you.

Securing the server operating system, setting up firewalls, and hardening the
environment are all broad topics and out of scope for this book. I recommend
taking the time to understand network and OS-level security. Here are a few
good online tutorials and lists to get you started:

• Securing and Optimizing Linux: The Ultimate Solution3

• An Introduction to Securing Your Linux VPS4

• 20 Linux Server Hardening Security Tips5

1. http://heartbleed.com/
2. http://www.symantec.com/connect/blogs/shellshock-all-you-need-know-about-bash-bug-vulnerability
3. http://www.tldp.org/LDP/solrhe/Securing-Optimizing-Linux-The-Ultimate-Solution-v2.0.pdf
4. https://www.digitalocean.com/community/tutorials/an-introduction-to-securing-your-linux-vps
5. http://www.cyberciti.biz/tips/linux-security.html

Chapter 2. Set Up the Environment • 8

• Click  HERE  to purchase this book now.  discuss

http://heartbleed.com/
http://www.symantec.com/connect/blogs/shellshock-all-you-need-know-about-bash-bug-vulnerability
http://www.tldp.org/LDP/solrhe/Securing-Optimizing-Linux-The-Ultimate-Solution-v2.0.pdf
https://www.digitalocean.com/community/tutorials/an-introduction-to-securing-your-linux-vps
http://www.cyberciti.biz/tips/linux-security.html
http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec


Avoid Security Configuration Errors
Now that our server won’t fall to the first script kiddie that comes along, let’s
make sure we won’t make errors configuring our software stack. Breaches
due to misconfiguration are more common than those due to zero-day vulner-
abilities.

What Is a Zero-Day Vulnerability?

Some software bugs let attackers remotely execute commands on
targeted machines. Although software developers quickly release
patches as soon as these issues are found, sometimes attackers
find the bugs first. Zero-day vulnerabilities are bugs attackers are
using before the software developer has the chance to fix them.
Zero days have passed since the patch for that bug, hence the
name.

There are as many possible areas of misconfiguration as there are different
combinations of software installed on your server, making it impossible to
cover them all in a single book. Let’s focus on common configuration mistakes
and how to configure the production and development environments. These
examples should give you a good grounding of what you should and shouldn’t
do in your setup.

Change Default Users and Passwords
First, you need to keep an eye on default accounts. We all like it when things
work right out of the box—little to no setup and everything runs smoothly.
While the fact that some frameworks and content management systems (CMSs)
ship with default accounts pre-created makes installation convenient, it
presents a serious security threat.

What’s the threat, you ask? Well, anyone who has either installed the software
or read the documentation will know about those accounts. So unless you
change them, anyone can use those accounts and walk through all your layers
of security. This is a widespread issue, since default accounts can also be
found on networking equipment, databases, and cloud server instances, to
name a few. Any default accounts in the software and hardware stack must
be either deactivated or reconfigured.

Set Up Separate Development and Production Servers
In a proper software development environment, you test and stage code so
that you iron out any bugs before production. However, there’s a security

• Click  HERE  to purchase this book now.  discuss

Avoid Security Configuration Errors • 9

http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec


paradox: you want to keep the development, testing, and staging environments
separate and homogenous at the same time. What you end up should be
similar to the following diagram.

Let’s start with the separation. Production and development environments
should not be on the same machine. You might wonder why, especially since
consolidating would reduce development costs.

The answer is simple: development versions of the application are by definition
incomplete and have bugs. Attackers can exploit those issues to access pro-
duction data or look at the source code to understand how the application
works. The development environment should be treated as an internal
resource, one that cannot be accessed directly from the web and lives behind
an authentication screen to make sure only authorized users can get in.

To reiterate, keep your production code separate from everything else.

You want to make sure the application runs as expected in production, which
means the development, testing, and production environments have to have
the same software and settings. But it’s neither optimal nor safe to configure
production exactly the same as other environments, because they fulfill dif-
ferent purposes, as the following illustration shows.

Chapter 2. Set Up the Environment • 10

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec


Development environment tends to have more relaxed security and verbose
logging for debugging. All the developers on the team need to have access to
the development environment. In comparison, the whole team typically doesn’t
work on production servers, so fewer users should be able to log in. As I also
discuss in Decide What Gets Logged, on page ?, verbose logging in production
is not a good idea.

There are a few ways to configure the development and production environ-
ments. You can do it manually with the process.NODE_ENV environment variable,
use a configuration manager, or look for a built-in solution, such as the
environment in the express framework. The manual process isn’t recommended
because it gets hard to maintain.

I prefer a configuration manager, but it depends on the complexity and size
of the application. I like easy-config6 (which I wrote), but there are dozens
available, such as node-config7 and nconf.8

I suggest using environmental variables such as NODE_ENV to differentiate
between them externally. This is less error prone than using runtime argu-
ments, and you’re less likely to start up an environment with the wrong set-
tings. Even the express framework recognizes NODE_ENV.

To sum up, live, or production, environments should have restricted policies,
with fewer people having access and with fewer privileges. All third-party
software should have separate accounts used only within the production
environment. And finally, live environments should also have less-verbose
logging and error handling, which we look at next.

6. https://github.com/DeadAlready/node-easy-config
7. https://github.com/lorenwest/node-config
8. https://github.com/flatiron/nconf

• Click  HERE  to purchase this book now.  discuss

Avoid Security Configuration Errors • 11

https://github.com/DeadAlready/node-easy-config
https://github.com/lorenwest/node-config
https://github.com/flatiron/nconf
http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec


Limit Error Messages in Production

In the development environment it’s useful to have descriptive error messages
and the stack trace printed out for easy debugging. However, they shouldn’t
be shown in the production environment because they would provide
attackers with extra information about the application structure and could
possibly expose some vulnerabilities or attack vectors.

For example, with SQL injection, which we’ll cover in Chapter 5, Secure Your
Database Interactions, on page ?, there’s a vast difference between regular
SQL injection and blind SQL injection. The first shows descriptive error
messages that provide attackers with insight into what exactly happened and
what they have to do to construct a valid attack:

Error: ER_PARSE_ERROR: You have an error in your SQL syntax;
check the manual that corresponds to your MySQL server version
for the right syntax to use near '"karl""' at line 1
at Query.Sequence._packetToError (mysql/lib/protocol/sequences/Sequence.js:48:14)
at Query.ErrorPacket (mysql/lib/protocol/sequences/Query.js:82:18)
at Protocol._parsePacket (mysql/lib/protocol/Protocol.js:271:23)
at Parser.write (mysql/lib/protocol/Parser.js:77:12)
at Protocol.write (mysql/lib/protocol/Protocol.js:39:16)
...

Blind SQL is much more difficult for attackers since error messages provide
no information about what went wrong. That’s what we want to see more of.
Or in this case less of.

In the express framework, the default error handler watches for NODE_ENV to
determine if the detailed stack trace information gets shown. If you set
NODE_ENV=production, then all you see is the message, Internal Server Error.

As it should be. As long as you’re tight lipped in your production environment,
then you can feel good—you’re doing things the way they should be done.

Locking the Environment

We’ve been talking for a while about how the production and development
environments should be on separate machines and have different configuration
settings. But at the same time we also need the environments to be homoge-
neous.

Before you start roll your eyes and say, “What!” let me explain. I am talking
about the software stack. In a perfect world, the servers are clones in terms
of operating system, packages installed, and configuration settings.

The recommended setup for Node.js projects places used modules in a pack-
age.json file, to look something like the following:

Chapter 2. Set Up the Environment • 12

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec


{
"name": "security-misconfiguration",
"version": "0.0.1",
"main": "environment.js",
"dependencies": {

"connect-redis": "*",
"easy-session": "*"

}
}

(This example package.json is useless; it was severely gutted to shorten the
examples that follow.)

package.json lets you use the npm install command to install all the dependencies.
Since we marked each dependency with *, the latest available versions from
the repository will be installed. This sounds like a good idea, except now we
don’t know whether any of the packages have been updated since they were
installed in the development environment. The production environment may
wind up with newer versions installed than the ones in development.

We talked about having updated software earlier, so having newer versions
is better, right? While that’s true to some extent, if you haven’t tested your
application against the newer version of software, then you don’t know about
potential problems. Maybe the new version of the software causes your
application to break or introduces some weird inconsistencies. If you don’t
know that your software works exactly the same way in production as it does
in development, that’s not a good thing.

So we should change the package.json to tie down the versions:

{
"name": "security-misconfiguration",
"version": "0.0.1",
"main": "environment.js",
"dependencies": {

"connect-redis": "~1.4.6",
"easy-session": "0.0.2"

}
}

This defines more precisely the versions of the packages you want to use. The
first is added as an approximate version and the last as a specific version of
the package. To make it easier to add approximate versions during develop-
ment, use the --save flag:

npm install express --save

This will install the express module and add "express": "~3.4.8" under "dependencies".

• Click  HERE  to purchase this book now.  discuss

Avoid Security Configuration Errors • 13

http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec


This seems to solve the problem, except for the fact that required dependencies
frequently have subdependencies. So it didn’t really fix the issue, did it? The
following example lists the dependencies for connect-redis:

"dependencies": {
"redis": "0.9.x",
"debug": "*"

},
"devDependencies": {

"connect": "*"
}

This might make it look like the node_modules folder should be included within
the repository itself. However, since Node.js supports modules written in C
and C++ as well, some of them might need compiling and compiled modules
tend to break when moved around. To mitigate, we can use shrinkwrap9 to
lock up the whole dependency tree.

For example, let’s look at our original project to install two dependencies.
Run the following to create the npm-shrinkwrap.json:

npm shrinkwrap

{
"name": "security-misconfiguration",
"version": "0.0.1",
"dependencies": {

"connect-redis": {
"version": "1.4.6",
"from": "connect-redis@*",
"dependencies": {

"redis": {
"version": "0.9.2",
"from": "redis@0.9.x"

},
"debug": {

"version": "0.7.4",
"from": "debug@*"

}
}

},
"easy-session": {
"version": "0.0.2",
"from": "easy-session@*"

}
}

}

9. https://www.npmjs.org/doc/cli/npm-shrinkwrap.html

Chapter 2. Set Up the Environment • 14

• Click  HERE  to purchase this book now.  discuss

https://www.npmjs.org/doc/cli/npm-shrinkwrap.html
http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec


Now we can see all dependencies listed in the tree. When we run npm install
and the npm-shrinkwrap.json file is in the directory next to package.json, then shrinkwrap
installs the same versions we used originally. This keeps the environments
homogeneous. I won’t go into more detail here, but I recommend looking up
more information about the versioning and contents of package.json.10

Wrapping Up
Proper server configuration is critical for any secure web application because
you’re building the base of the application. In this chapter, we looked briefly
at securing the web server, password security, and separating development
and production environments. The last thing you want is poor setup or a bug
in development to compromise production.

We continue our focus on layered security by moving up another step. This
time we’ll secure the network layer, which defines how we communicate with
the world. Let’s move on.

10. https://www.npmjs.org/doc/files/package.json.html#dependencies

• Click  HERE  to purchase this book now.  discuss

Wrapping Up • 15

https://www.npmjs.org/doc/files/package.json.html#dependencies
http://pragprog.com/titles/kdnodesec
http://forums.pragprog.com/forums/kdnodesec



