Real-World
Event Sourcing

Distribute, Evolve,
and Scale Your Elixir Applications

Kevin Hoffman

gf:— —Z edited by Kelly Talbot
/

This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

s

322Ino0s J1X1)3 INOA

https://www.pragprog.com

Handling Errors by Modeling Failure

Let’s take this example to the next step. The code you've written so far is
actually fairly brittle. For example, the code can easily be broken with a divide
by zero error:

iex(4)> evt2 = EventSourcedCalculator.V2.handle command(%{value: -1},
...(4)> %{cmd: :div, value: 0})
%{event type: :value divided, value: 0}
iex(5)> state2 = EventSourcedCalculator.V2.handle_event(%{value: 9}, evt2)
** (ArithmeticError) bad argument in arithmetic expression

es calc v2.exs:31: EventSourcedCalculator.V2.handle event/2

Modeling errors and failure conditions is an enormous topic covered in detail
later in the book, so for now you’ll only handle a couple of easily managed
cases. Create a third version of the calculator with the following code:

esintro/es_calc_v3.exs

defmodule EventSourcedCalculator.V3 do
@max state value 10 000
@min state value 0

def handle command(%{value: val}, %{cmd: :add, value: v}) do
%{event type: :value added,
value: min(@max state value - val, v)}
end

def handle command(%{value: val}, %{cmd: :sub, value: v}) do
%{event type: :value subtracted,
value: max(@min state value, val - v)}
end

def handle_command(
%{value: val},
%{cmd: :mul, value: v}
)
when val * v > @max state value do
{:error, :mul failed}
end

def handle command(%{value: val}, %{cmd: :mul, value: v}) do
%s{event type: :value multiplied, value: v}
end

def handle command(
%{value: val},
%{cmd: :div, value: 0}
) do
{:error, :divide failed}
end

def handle command(%{value: val}, %{cmd: :div, value: v}) do
%{event type: :value divided, value: v}

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/khpes/code/esintro/es_calc_v3.exs
http://pragprog.com/titles/khpes
http://forums.pragprog.com/forums/khpes

2

end

def handle_event(
%{value: val},
%{event type: :value added, value: v}
) do
%{value: val + v}
end

def handle event(
%{value: val},
%s{event type: :value subtracted, value: v}
) do
%{value: val - v}
end

def handle event(
%{value: val},
%s{event_type: :value multiplied, value: v}
) do
%{value: val * v}
end

def handle event(
%{value: val},
%{event type: :value divided, value: v}
) do
%{value: val / v}
end

def handle_event(
%{value: val},
%{}
)

def handle event(%{value: val} = state,) do
state
end
end

A couple highlights here are that this code enforces an upper and lower bound
on the calculator state. Code like this will accept commands that could over-
flow values by modifying the changed amounts. In the preceding code, the
@max_state value module constant limits the value on the event.

Let’s see how this new code behaves:

iex(2)> EventSourcedCalculator.V3.handle command(
... (2)> %{value: 9500}, %{cmd: :add, value: 650})
%{event type: :value added, value: 500}

This is the first new feature: the command requested that the value 650 be
added, but due to the ceiling implementation, only 500 was added. This may

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/khpes
http://forums.pragprog.com/forums/khpes

Handling Errors by Modeling Failure ® 3

seem like a small detail now, but this kind of behavior will be critically
important later. Command handlers should never be considered as merely
“blindly converting a command into an event that occurred in the past.” Put
another way, a command represents a request for something to happen and
an event represents what actually happened and the two will only ever look
identical in the simplest of cases.

Let’s see what happens when you try to divide by zero:

iex(3)> EventSourcedCalculator.V3.handle_command (
...(3)> %{value: 9500}, %{cmd: :div, value: 0})
{:error, :divide failed}

This is another subtle but important detail. The command was rejected out-
right, so the code returned an error type of :divide_failed. Since nothing happened
as a result of this command, no event was emitted. Sometimes it may seem
useful to emit an “error event”, but that has many consequences. When to
emit error events and when to simply reject commands is something that will
be covered throughout the book as you model different domains.

This brings up the first event sourcing law:

All Events are Immutable and Past Tense
Every event represents something that actually happened. These
events cannot be modified and always refer to an event that took
Q place. Modeling the absence of a thing or a thing that didn’t
actually occur may often seem like a good idea, but it can confuse
both developers and event processors.

In order to not break this rule, you need to not store an event for command
validation failures. While guidelines for when to emit events for failures are
hotly debated, my personal opinion distilled from much suffering is that vali-
dation failures are not events.

The critical aspect here is that the event handler is not where validation
happens, that happens in a command handler. After all, if the thing already
occurred, how can we go back in time to validate it?

Chapter 11, Modeling and Discovering Application Domains, on page ? goes

into more detail and provides tips and tricks that will help with modeling
failure and other edge cases.

Of course, repeatedly handling commands and applying the resulting events
while still maintaining an intermediate result looks an awful lot like a fold.
In functional programming, a fold is a higher-order function that performs a
recursive operation on some list of data, progressively building up a single

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/khpes
http://forums.pragprog.com/forums/khpes

o4

return value. Another form of a fold is a reduce, which, as the name implies,
reduces a list of elements into a single element. Operations like summing the
numbers in a list or producing a final balance from a list of ledger items can
all be represented as a fold.

Indeed, you could say that the state of any event sourced component can be
produced by folding a function over the event stream. Let’s look at how to do
that with the sample you've been building so far. Make sure the es_calc_v3.exs
file has been compiled and EventSourcedCalculator.V3 imported.

iex(3)> cmds = [%{cmd: :add, value: 10},
...(3)> %{cmd: :add, value: 50}, %{cmd: :div, value: 0},
...(3)> %{cmd: :add, value: 2}]
[
%{cmd: :add, value: 10},
%{cmd: :add, value: 50},
%{cmd: :div, value: 0},
%{cmd: :add, value: 2}
1
iex(4)> initial = %{value: 0}
%{value: 0}
iex(5)> cmds |> List.foldl(initial,
...(5)> fn cmd, acc -> handle_event(acc, handle_command(acc,cmd)) end)
%{value: 62}
iex(6)>

Now, having worked through the exercises in this chapter on your own,
hopefully you received the payoff of a nice fresh hit of dopamine. At this point
you can declare a sequence of commands that you wish to send to a calculator.
You can then fold that list of commands by passing the event produced by the
handle_command function (if any) to the handle_event function. The preceding code
can be refactored to use more of the pipeline operator, but this syntax is
hopefully a bit more easily read.

It is very important that you know what happened to the event produced by
%{cmd: :div, value: 0}. As you know, this produces a failure event. Recall the fol-
lowing code from V3 of the calculator:

def handle_event(%{value: _val} = state, _) do

state
end

This fallthrough matches any event that the calculator doesn’t handle. The
calculator doesn’t explicitly handle :divide failed error, so this function picks
that up. This brings up the second law of event sourcing:

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/khpes
http://forums.pragprog.com/forums/khpes

Handling Errors by Modeling Failure ® 5

Applying a Failure Event Must Always Return the Previous State
Any attempt to apply a bad, unexpected, or explicitly modeled
Q failure event to an existing state must always return the existing
state. Failure events should only indicate that a failed thing
occurred in the past, not command rejections.

No matter what happens during the processing of an event, a failure during
processing or an event that indicated a failure must always return the state
current at the time of processing. This rule is actually what makes an event
stream possible. If processing an event could break the stream, event sourcing
wouldn’t work.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/khpes
http://forums.pragprog.com/forums/khpes

