
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Building Your First Projection
The bank account ledger example is one of the easiest to build and understand
in event sourcing, so let’s start there. In this exercise, you’ll build a projection
for a bank account balance. In more formal terms, you’ll build a projector that
takes data from events in the event log and stores that data in a read model
projection, which can then be queried by consumers.

A projector is a piece of code responsible for producing read model data for
consumption by one or more parties. For this sample, the projector is
AccountBalance and the projection is just a piece of data containing the most up
to date balance for a given account. As with aggregates, projections have keys
that allow you to differentiate one from another. The bank ledger example is
easy because it has an obvious key: the account number.

Let’s start with the client API for the projector and then move on to the
implementation details. Assume that you want to be able to perform the fol-
lowing tasks:

iex(1)> Projectors.AccountBalance.apply_event(%{event_type: :amount_deposited,
...(1)> account_number: "NEWACCOUNT", value: 12})
:ok
iex(2)> Projectors.AccountBalance.lookup_balance("NEWACCOUNT")
{:ok, 12}

In this code, an event (:amount_deposited) is applied to a projector, and then the
projected balance is available for query. A subtle point here is that the
apply_event function doesn’t accept a key separate from the event. This is to
avoid accidentally applying an event to the wrong projection. You don’t want
to apply the deposit event to OLDACCOUNT if the value of account_number on the
event is NEWACCOUNT. This brings up another law of event sourcing:

All Data Required for a Projection Must Be on the Events

The event is the only source of truth. If code allows a different
piece of information to be supplied as a parameter that contradicts
information on the event, you can corrupt an entire event stream.
As such, all keys, metadata, and payload data must come from
events and nowhere else.

Implicit information can also be used by projectors. For example, in many
cases, especially when building things like rolling averages, the projector may
need to make use of event counts or previously calculated data. If you’re
thinking that previously calculated data is data not on events, and so it vio-
lates the rule you just learned, that’s natural. The distinction is subtle and

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/khpes
http://forums.pragprog.com/forums/khpes

pedantic, but projectors can maintain their own internal state, also derived
from the event log. The key is that this behavior is still referentially transpar-
ent, and given the same event log, a projector will always produce the same
output.

In this chapter, you’ll be creating projectors as GenServers that manage their
projections as in-memory data. Later in Chapter 12, Scaling Out the Event
Sourcing Building Blocks, on page ?, you’ll get to dive deep into techniques
for dealing with distributed, persistent, highly-available projections.

But for now, let’s focus on simple projections and create an empty scaffold
for the GenServer:

defmodule Projectors.AccountBalance do
use GenServer
require Logger

def start_link(account_number) do
GenServer.start_link(
__MODULE__,
account_number,
name: via(account_number))

end

@impl true
def init(account_number) do

{:ok, %{balance: 0, account_number: account_number}}
end

defp via(account_number) do
{:via, Registry,
{Registry.AccountProjectors, account_number}}

end
end

This is enough to call Projectors.AccountBalance.start_link("my_account") and get back
a pid. This server maintains a projection that has the account number and
the current balance. In order to trigger this server to update the balance, let’s
add some functions for application of events.

def apply_event(%{account_number: account} = event)
when is_binary(account) do

case Registry.lookup(Registry.AccountProjectors, account) do
[{pid, _}] ->
apply_event(pid, event)

_ ->
Logger.debug(

"Attempt to apply event to non-existent account, starting projector")
{:ok, pid} = start_link(account)
apply_event(pid, event)

end

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/khpes
http://forums.pragprog.com/forums/khpes

end

def apply_event(pid, event) when is_pid(pid) do
GenServer.cast(pid, {:handle_event, event})

end

@impl true
def handle_cast({:handle_event, evt}, state) do

{:noreply, handle_event(state, evt)}
end

def handle_event(%{balance: bal} = s,
%{event_type: :amount_withdrawn, value: v}) do

%{s | balance: bal - v}
end

def handle_event(%{balance: bal} = s,
%{event_type: :amount_deposited, value: v}) do

%{s | balance: bal + v}
end

def handle_event(%{balance: bal} = s,
%{event_type: :fee_applied, value: v}) do

%{s | balance: bal - v}
end

A couple of interesting things are going on here. The first is that if an event
arrives for an account that doesn’t yet have a running projector, the code
starts one with an initial balance of 0. There will always be one server per
account, each maintaining its own projection. An Elixir process registry is
used to manage the list of all projectors, keyed on the account number.

Next, let’s add some code to allow consumers to query the balance of any
given account:

def lookup_balance(account_number) when is_binary(account_number) do
with [{pid, _}] <-

Registry.lookup(Registry.AccountProjectors, account_number) do
{:ok, get_balance(pid) }

else
_ ->
{:error, :unknown_account}

end
end

@impl true
def handle_call(:get_balance, _from, state) do

{:reply, state.balance, state}
end

The registry1 (note you’ll have to start this explicitly via start_link as shown in
the next example, or through a supervision tree) makes for an ideal way of
1. https://hexdocs.pm/elixir/1.12/Registry.html

• Click HERE to purchase this book now. discuss

Building Your First Projection • 5

https://hexdocs.pm/elixir/1.12/Registry.html
http://pragprog.com/titles/khpes
http://forums.pragprog.com/forums/khpes

locating the process responsible for the account balance projection for a given
account. If there’s no running projector, then the balance query will return
{:error, :unknown_account}.

With all of this in the module, exercise what you’ve built so far:

iex(1)> {:ok, _} = Registry.start_link(keys: :unique,
...(1)> name: Registry.AccountProjectors)
{:ok, #PID<0.304.0>}
iex(2)> c("balance_projector.exs")
...(3)> Projectors.AccountBalance.apply_event(
...(4)> %{event_type: :amount_deposited,
...(5)> account_number: "NEWACCOUNT", value: 12})
:ok
iex(6)> Projectors.AccountBalance.apply_event(
...(7)> %{event_type: :amount_deposited,
...(8)> account_number: "NEWACCOUNT", value: 30})
:ok
iex(9)> Projectors.AccountBalance.lookup_balance("NEWACCOUNT")
{:ok, 42}
iex(10)> Projectors.AccountBalance.lookup_balance("DOESNOTEXIST")
{:error, :unknown_account}

That’s all there is to it! The state updating aspect of projectors is easy. It
doesn’t take much effort to perform some basic business logic and store the
result. In real applications, instead of manually calling apply_event, you would
likely see a dispatch or routing system that funnels events from a stream
through projectors.

The more challenging part of projectors, as you’ll see as you go through more
advanced exercises, is designing the events and projections and working
within the many constraints enforced by event sourcing.

Aggregate State vs Projections

Aggregates maintain their own state. This state must be considered
private and is only ever used to validate commands sent to the
aggregate and populate outgoing events. This differs from projec-
tions, which are designed to be shared, communal views accessible
to any consumer that knows how to find and interpret them. In
simple cases, aggregate state and projection data may be indistin-
guishable, but resist the temptation to combine them or violate
role boundaries because doing so can remove the predictable and
repeatable aspects of an event sourced system.

Let’s move on to a more sophisticated, and realistic, example.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/khpes
http://forums.pragprog.com/forums/khpes

