
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Preface
I can still remember the first time I needed event sourcing without knowing
it. I’d trapped a handful of players in an elevator in an online multiplayer
game (it was text-based, and it was so long ago we had to share our keyboards
with dinosaurs and remnants of the ice age). My code naively set values on
data in direct response to events (like angry players pushing a button). As a
result, all it took was a couple of players to hit the button around the same
time to trap them in a void halfway between upstairs and downstairs.

At some point many moons after that disaster, I came to the realization that
everything is event sourced. This new understanding brought me joy and
returned some of the awe of learning to my job again. I wanted to share this
joy with everyone, but never felt qualified to do so. Finally, after some
(redacted) number of years of building software and learning from having
failed to build software properly, I have both the joy and the qualifications
I’ve always needed to write this book.

This book is opinionated, but its goal isn’t to make sure you blindly adopt all
of my opinions. Rather, its goal is to give you the knowledge, hands-on
experience, and information you need to decide whether or not you agree with
my opinions, and which ones you will embrace for your next event sourcing
project.

This book will teach you how to event source everything through examples
written in Elixir, and how to avoid many of the pitfalls common to first
attempts at building event sourced apps. My singular hope is that when you
reach the end of it, event sourcing will bring you as much joy as it does me
and you will go on to build amazing things.

Who Should Read This Book?
This book is for the curious. It’s for developers who build app after app, service
after service, and wonder if if there’s a better way. If you’ve ever been curious
about Event Sourcing, or wondered if there was a way to create more reliable,

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/khpes
http://forums.pragprog.com/forums/khpes

testable, and stable systems and maybe even simplify your code at the same
time, then this book is for you. If it’s always bugged you that an application
can give you its current state, but can’t give you any guarantees about the
reliability of that data or even how it came to be, then you’ll definitely want
to read this book.

The language of choice for this book is Elixir. While some previous knowledge
of Elixir will definitely help with running and understanding some of the
samples, it isn’t strictly required. Many of the samples should be easy enough
to read by anyone with exposure to functional programming languages. Some
more advanced content leverages GenServer1 and GenStage,2 so if you’re
unfamiliar with those concepts you may want to read up on them before you
progress beyond the fundamentals section (the first four chapters).

Event sourcing, at least as this book covers it, is primarily a back-end tech-
nology. If you’re curious about the use of event sourcing in front-end technol-
ogy, then I suggest checking out languages like Elm3 and the myriad libraries
and tools available for JavaScript/TypeScript like Redux.4

About This Book
This book opens with an overview of the fundamental building blocks of event
sourcing: aggregates, projectors, notifiers, injectors, and process managers.
Once you have a firm grasp of those fundamentals, it’s time to start applying
those by using libraries, external data stores, persistent streams, and more.
Finally, the book aims you firmly at production by covering modeling, model
discoverability and documentation, testing, security, and preparing for scale.
These topics are organized into the following chapters:

Chapter 1: Building Your First Event-Sourced Application
Whet your appetite with an introduction to event sourcing, what it is, and
why we want to use it. Learn about the first building block of event
sourcing, the aggregate.

Chapter 2: Separating Read and Write Models
Learn to separate the read and write models, what projections are, and
when and how to use them.

1. https://hexdocs.pm/elixir/GenServer.html
2. https://hexdocs.pm/gen_stage/GenStage.html
3. https://elm-lang.org
4. https://redux.js.org

Preface • iv

• Click HERE to purchase this book now. discuss

https://hexdocs.pm/elixir/GenServer.html
https://hexdocs.pm/gen_stage/GenStage.html
https://elm-lang.org
https://redux.js.org
http://pragprog.com/titles/khpes
http://forums.pragprog.com/forums/khpes

Chapter 3: Enforcing Perimeters with Injectors and Notifiers
Interact with external systems and maybe even the “real world” using
notifiers and injectors.

Chapter 4: Exploring the Saga of the Process Manager
Model event flows, sequences, and long-running activities using process
managers.

Chapter 5: Building Event-Sourced Elixir Apps with Commanded
Learn about Elixir’s defacto standard event sourcing library, Commanded.

Chapter 6: Building Resilient Applications with Event Stores
This chapter will introduce you to the criteria for choosing an event store
and when and why you need them.

Chapter 7: Evolving Event-Sourced Systems
In systems that are supposed to be immutable, learn techniques and rules
for how those systems can evolve over time to meet new demands and
business requirements.

Chapter 8: Securing Event-Sourced Applications
Security can never be an after-thought. This chapter will discuss some
of the security concerns that are specific to event-sourced applications.

Chapter 9: Testing Event-Sourced Systems
One of the most powerful benefits of event sourcing is how easily event
sourced applications can be tested. Learn some techniques and patterns
for making assertions about event flows.

Chapter 10: Modeling Discoverable Application Domains
We rarely ever build applications in a vacuum. In this chapter, learn some
tools, techniques, and patterns for modeling event sourced applications
and sharing and communicating those models.

Chapter 11: Scaling Up and Out
We finish up our event sourcing journey with a discussion of how scaling
event-sourced applications may be different from traditional applications,
and why that’s a good thing.

Appendix 1: The Laws of Event Sourcing
This reference provides a handy recap of all of the laws of event sourcing
that are discussed throughout the book. Of course, it’s important to read
the book’s actual chapters to put them into proper context.

• Click HERE to purchase this book now. discuss

About This Book • v

http://pragprog.com/titles/khpes
http://forums.pragprog.com/forums/khpes

How to Read This Book
This book is neither a reference manual nor is it a guided tour through a
single all-encompassing sample. It is best read from start to finish in chapter
order. Though some some samples may exist on their own without the code
from previous chapters; the knowledge, lessons, and rules are all designed
to be read in order and build on the work done earlier.

Conventions Used in This Book
The conventions in this book are generally the same as any other book from
The Pragmatic Bookshelf, with a few things specific to this material.

Laws of Event Sourcing
Throughout the book I will introduce the so-called laws of event sourcing.
Each one will appear in an exclamatory block like this one:

All Events are Immutable and Past Tense

Every event represents something that actually happened. These
events cannot be modified and always refer to an event that took
place. Modeling the absence of a thing or a thing that didn’t
actually occur may often seem like a good idea, but it can confuse
both developers and event processors.

While there will be other blocks similar to this, I’ve made sure that the ones
with the exclamation point are the “laws” of event sourcing, which are also
contained in the appendix.

Code Blocks
Code blocks throughout the book generally take the same form, as shown
below:

defmodule Calculator do
def add(x, y) do

x + y
end

def mul(x, y) do
x * y

end

def div(x, y) do
x / y

end

def sub(x, y) do

Preface • vi

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/khpes
http://forums.pragprog.com/forums/khpes

x - y
end

end

For the most part, the code is formatted the way you might expect Elixir
modules to be formatted. However, in some cases the standard Elixir format
produces listings that are too long due to excessive carriage returns, too wide
for a printed page, etc. In those cases, we’ve made our own book-specific
formatting choices and this isn’t an oversight but intentional.

Sidebars and Commentary
You’ve already seen the blocks of text that provide additional context about
the part of the chapter you’re reading. You may also occasionally see a sidebar
like the one below. Sidebars offer parenthetical or related information that
might not be considered part of the book’s main core.

Dungeons and Dragons

I mentioned a random number generator in the code, so as an aside, I think I should
discuss dice-based games like Dungeons and Dragons.

Online Resources
As always, the single source of truth for this book and its associated code is
the Pragmatic Programmers website.5 Throughout the book there will be links
to GitHub repositories, websites, and other reference materials that comple-
ment the book’s core text.

Let’s Get Started!
Now the fun begins and we can start our event sourcing journey!

5. https://pragprog.com/titles/khpes

• Click HERE to purchase this book now. discuss

Online Resources • vii

https://pragprog.com/titles/khpes
http://pragprog.com/titles/khpes
http://forums.pragprog.com/forums/khpes

