
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Creating a Simple Process Manager
The canonical “hello world” sample of process managers is usually a batch
processor. You’re going to build a process manager that advances the handling
of a batch of files. The nature of these files or what needs to be done to them
isn’t really relevant for this exercise.

The process starts when an initiating event, batch_created, is received. From
there, the process manager issues a single command requesting work from
an aggregate for each of the files in the batch. Thereafter, the process manager
keeps tabs on the processing status of each of the files, as shown in the fol-
lowing diagram:

File Batch
Aggregate

Batch Process
Manager

File Processing
Gateway

Create Batch1.

2. Batch Created

3. Process File
...

4. File Process
Requested

5. File Processed

n. Batch Completed

The flow through the system in an error-free path might be:

1. A batch is created via the create_batch command.
2. The file batch aggregate then emits the batch_created event.
3. The process manager creates and dispatches one command per file on the

batch.
4. The file batch aggregate (not coded for this sample) emits a file processing

requested event, which is picked up by a notifier/gateway.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/khpes
http://forums.pragprog.com/forums/khpes

5. When the file processing (external) is completed, the injector/gateway
dispatches the file_processed event.

6. The process manager updates its internal state upon receipt of file processed
events.

While this might seem like a lot of busywork, you’ll only be creating the process
manager for this flow and assuming that the rest of the system has already
been taken care of. Before creating the next bit of code, make sure to take
note of the next law of event sourcing:

Work is a Side Effect

A frequently asked question in new event sourcing projects is
“where does the work happen? Aggregates are not allowed to per-
form side effects or read from external data. Process managers are
not allowed to perform side effects or read from external data.
Projectors can create external data, but they can’t perform “work”
either.

If you follow the rule that work is a side-effect, things may be
easier to understand. If work is a mutation of the world outside
the event sourced system, then it’s a side effect, and side effects
are only allowed through gateways. The core primitives of aggre-
gates, projectors, and process managers must never do work.

For this sample, create a GenServer that reacts to the batch_created and file_processed
events. You can create an application to hold this GenServer by typing mix
new batch --sup in your favorite shell. Add a process_manager.ex file to lib/batch:

chap4/batch/lib/batch/process_manager.ex
defmodule Batch.ProcessManager do

use GenServer

def start_link(%{id: _id} = state) do
GenServer.start_link(__MODULE__, state)

end

def init(%{id: id}) do
{:ok,
%{

id: id,
files: %{},
status: :idle

}}
end

def handle_call({:process_event, evt}, _from, state) do
handle_event(state, evt)

end

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/khpes/code/chap4/batch/lib/batch/process_manager.ex
http://pragprog.com/titles/khpes
http://forums.pragprog.com/forums/khpes

defp handle_event(
state,
%{
event_type: :batch_created,
files: files

}
) do

f = Enum.map(files, fn f -> {f, :pending} end) |> Map.new()

state = %{
state
| files: f,

status: :created
}

reply =
Enum.map(files, fn f ->

%{
command_type: :process_file,
file: f

}
end)

{:reply, reply, state}
end

defp handle_event(state, %{
event_type: :file_processed,
file: %{id: file_id, status: file_status}

}) do
files = Map.put(state.files, file_id, file_status)

state = %{
state
| files: files,

status: determine_status(files)
}

To add functionality we could send retry commands for those
files that have failed

{:reply, [], state}
end

defp determine_status(file_map) do
cond do
Enum.all?(

file_map,
fn {_f, status} -> status == :success end

) ->
:success

Enum.any?(
file_map,
fn {_f, status} -> status == :error end

• Click HERE to purchase this book now. discuss

Creating a Simple Process Manager • 5

http://pragprog.com/titles/khpes
http://forums.pragprog.com/forums/khpes

) ->
:error

true ->
:pending

end
end

end

The code in this process manager implements the process flow outlined in
the preceding diagram. The process manager GenServer is created by calling
start_link. Note that in this example the starting or provisioning of an OTP pro-
cess is done out of band from the event handling. This is just to keep things
simple for the example. How loosely or tightly coupled the lifetime of a process
manager is to the lifetime of an OTP process (or other kind of process/thread)
depends entirely on which frameworks and tools you’re using. You’ll encounter
examples of multiple types of server lifetimes throughout the book.

The process manager begins its life with the status of :idle and, after receiving
a batch created event, quickly switches to :created. In response to this batch
created event, the process manager returns an array of commands: one for
each file that needs to be processed.

It then listens for :file_processed events coming back from the file processing
gateway and continues to adjust its internal state accordingly. The biggest
piece of business logic contained in this process manager is the determination
of the status of the batch process. The process is considered successfully
completed if all files were processed successfully, it’s in error if one or more
files failed processing, or otherwise the status is :pending.

Now use iex to interact with the sample process manager (line feeds in com-
mands are for human-friendly output only and not part of the command):

$ iex -S mix
iex(1)> {:ok, pid} = Batch.ProcessManager.start_link(%{id: "batch1"})
{:ok, #PID<0.194.0>}
iex(2)> GenServer.call(pid,

{:process_event, %{event_type: :batch_created, files: ["f1", "f2", "f3"]}})
[

%{command_type: :process_file, file: "f1"},
%{command_type: :process_file, file: "f2"},
%{command_type: :process_file, file: "f3"}

]
iex(3)> GenServer.call(pid, {:process_event,

%{event_type: :file_processed, file: %{id: "f1", status: :success}}})
[]
iex(4)> GenServer.call(pid, {:process_event,

%{event_type: :file_processed, file: %{id: "f2", status: :success}}})

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/khpes
http://forums.pragprog.com/forums/khpes

[]
iex(5)> GenServer.call(pid, {:process_event,

%{event_type: :file_processed, file: %{id: "f3", status: :success}}})
[]
iex(6)> :sys.get_state(pid)
%{

files: %{"f1" => :success, "f2" => :success, "f3" => :success},
id: "batch1",
status: :success

}

In the preceding iex session, you took on the role of a “meatspace aggregate”
and manually converted the commands emitted by the process manager into
events. In a complete system, the aggregate would automatically have pro-
cessed those commands. Responding to each :file_processed event advances the
overall state of the process manager. When all files have been processed, the
manager’s status moves to :success.

Depending on your application’s needs, the completed process manager state
might be marked for deletion or cleanup, or you might want to leave the state
around for historical queries. If you want to periodically “sweep” your process
manager state to clean it up, but you want summary data to remain, then
you will need to create a projector that emits the summary data. Another law
of event sourcing has appeared!

All Projections Must Stem from Events

Every piece of data produced by any projector must stem from at
least one event. You cannot ever create projection data out of band
of the event stream. Doing so would violate other event sourcing
rules and ruin your system’s ability to participate in replays.

This law also means never producing projections at timed intervals unless
you’re injecting stimulus events.

So far, so good. This should give you an idea of the kind of code that typically
goes into a process manager. At this point, it would be easy to start adding
more state and managing other semi-related activities within this one module,
but that would violate the next law of event sourcing.

Never Manage More Than One Flow per Process Manager

Each process manager is responsible for a single, isolated process.
Its internal state represents that of an instance of that managed
flow, e.g. “Order 421” or “Batch 73” or “New User Provisioning for
User ABC”. As tempting as it may be to create a process manager
for “orders” or “users”, never lump multiple process flows into a

• Click HERE to purchase this book now. discuss

Creating a Simple Process Manager • 7

http://pragprog.com/titles/khpes
http://forums.pragprog.com/forums/khpes

Never Manage More Than One Flow per Process Manager

single manager. Doing this generally means the failure of one flow
can cascade out throughout the system. Keeping flows separate
also avoids accidentally corrupting one process state with that of
another.

Next, let’s go through the process of modeling another sample domain where
you’ll build a slightly more complex process manager.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/khpes
http://forums.pragprog.com/forums/khpes

