
Extracted from:

Programming WebAssembly with Rust
Unified Development for Web, Mobile, and Embedded Applications

This PDF file contains pages extracted from Programming WebAssembly with Rust,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Programming WebAssembly with Rust
Unified Development for Web, Mobile, and Embedded Applications

Kevin Hoffman

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Andrea Stewart
Copy Editor: Jasmine Kwityn
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-636-5
Book version: P1.0—March 2019

https://pragprog.com
support@pragprog.com
rights@pragprog.com

For my grandfather—Walter K. MacAdam—
inventor, tinkerer, and IEEE president. He

quietly supported my exposure to computers
and programming throughout my childhood,

often in ways I didn’t know until after his death.
I always wanted to grow up to be like him, and

I only wish he could’ve seen this book.

CHAPTER 1

WebAssembly Fundamentals
With WebAssembly, there is a symbiotic relationship between the compiled
WebAssembly binary (called a module) and the host responsible for interpreting
it. This relationship is at the heart of everything that you can do with this
new technology, and understanding where the boundaries are between module
and host is key to being able to build effective WebAssembly applications.

WebAssembly can be viewed at two different levels—the raw, foundational
level and at the higher level of other programming languages using
WebAssembly as a target. Before you can understand and appreciate what
languages like Rust are doing when they produce WebAssembly modules,
you’ll need to know what WebAssembly can do, what it can’t, and how to use
language-independent tools.

This chapter gets you started at the foundation level, giving you an overview
of what WebAssembly is, how it works, and how other features can be built
upon this foundation. By the end of this chapter, you’ll be able to create and
build your own WebAssembly modules using cross-platform language tools
and your favorite code editor. While what you learn in these first few chapters
may not be things you do on a daily basis, the context they provide will be
invaluable as you build real applications with WebAssembly.

Introducing WebAssembly
If the modern programmable web is merely a toy store, then WebAssembly is
a toy warehouse filled with toys as far as the eye can see. Developers who
spend most of their time working on the front end often long for some of the
features, testability, and constraints prevalent in the world of servers and
services. Likewise, folks who spend most of their time toiling behind the
counter, away from the customer but carefully assembling all the parts of
their order, often long for the fluid, expressive, blank canvas world the front

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/khrust
http://forums.pragprog.com/forums/khrust

end represents. People who work in both worlds are keenly aware of the
paradigm differences between the two and why the grass isn’t always greener
on the other side.

What if “sides” or “front” or “back” didn’t matter anymore? What if there was
a new way of doing things, where you could write loosely coupled business
logic that flows between servers, services, clients, and browsers without any
shenanigans? What if you could have the best parts of the front- and back-
end worlds and still choose the most appropriate language for your problems?

By the time you reach the end of this book, you’ll have learned enough about
WebAssembly development that these propositions won’t sound like they
came from a snake-oil salesman. They’ll ring true and hopefully inspire you
to start building amazing new WebAssembly applications.

What Is WebAssembly?
The WebAssembly home page1 says that it is a binary instruction format for
a stack-based virtual machine. Wasm (a contraction, not an acronym, for
WebAssembly) is designed to be portable (capable of running on different
OSes, architectures, and environments without modification), and used as a
compilation target for higher-level languages like C++, Rust, Go, and many
others. The website also claims that Wasm enables deployment on the web
for client and server applications alike.

Let’s pick this definition apart a bit, because it’s rather dense.

First, and most importantly, WebAssembly is a portable binary instruction
format. This is very similar to the original intent behind Java’s bytecode and,
if you’re familiar with the .NET Framework, you may recognize this concept
as implemented in ILASM, the low-level instruction set supporting the Common
Language Runtime. You’ll see this in depth in the next chapter, but for now
it should suffice to know that the operations encoded in a WebAssembly
module are not tightly coupled to any one hardware architecture or operating
system, and these operations are just codes that a parser knows how to
interpret.

Next, there’s the phrase stack-based virtual machine. We’ll go over this in
detail soon, but the short explanation is that this stack machine simultane-
ously contributes to WebAssembly’s tremendous speed, power, and several
of its limitations.

1. webassembly.org

• 8

• Click HERE to purchase this book now. discuss

https://webassembly.org
http://pragprog.com/titles/khrust
http://forums.pragprog.com/forums/khrust

Finally, there’s a spot in the definition on which I fundamentally disagree.
The phrase “deployment on the web” might limit your thinking and your
imagination. This is a portable format that can run anywhere you can build
a host, which you’ll also be learning about later. Limiting WebAssembly’s
scope to the web (despite its name) does it a disservice.

What WebAssembly Is Not
The first question I get asked once I get on my WebAssembly soapbox is, “Isn’t
Wasm just another transpile target for JS?” Transpiling is translating from
one high-level source language to another high-level source language. This
is in contrast to the usual compiling, which takes a high-level source language
and translates it into a low-level machine code. For example, converting
TypeScript or React JSX into browser-executable JavaScript is done through
transpiling. WebAssembly is not a JavaScript transpile target (though you
can actually compile TypeScript into a Wasm module if you’re into that sort
of thing).

WebAssembly is also not meant to replace JavaScript. This is somewhat of a
controversial opinion, as a large group of WebAssembly devotees online are
convinced that it represents the death knell of JavaScript. While it might
signal the beginning of a new era in which you write significantly less manual
JavaScript, you still need JS to host WebAssembly 1.0 in the browser.

It’s also not intended as a mere replacement for (or successor to) Flash, Sil-
verlight, Adobe AIR, or Java Applets. As you’ll discover, WebAssembly isn’t
run as a process outside the browser. How seamlessly it integrates with the
user experience is entirely up to the developer and the tools they use.

Another important thing to remember is that WebAssembly, on its own, isn’t
a programming language. While there is both a binary and a text format,
writing it by hand for anything beyond a few samples would take far too long
and be too difficult to test and troubleshoot. Knowing how to write it by hand,
however, will help you make the right decisions as you learn to build
WebAssembly applications with Rust.

WebAssembly doesn’t stand on its own. Like a game cartridge without a
console or a BluRay disc without a player, it’s incomplete in isolation. Much
like a symbiote that needs to feed off of its host to survive, WebAssembly can’t
interact with anything outside the bounds of its own sandbox unless the host
allows it. All I/O and other interactions are done entirely at the behest of the
host such as a browser or a console application. While this might sound like

• Click HERE to purchase this book now. discuss

Introducing WebAssembly • 9

http://pragprog.com/titles/khrust
http://forums.pragprog.com/forums/khrust

an unfair limitation, you’ll see a number of times throughout this book why
this is actually a good thing.

Try It Out
The best way to start learning something is to jump right in. Imagine one of
those ball pits kids get to play in but, sadly, us adults are usually forbidden.
As learners, our first exposure to new material is like jumping into this pit,
surrounded by a dizzying array of colors and buried up to our necks in con-
fusion. As we struggle to make our way to the far end of the ball pit, we
gradually get our footing, the colors become more familiar, the shape and
landscape of the ball pit gets smaller, and we’re able to reason about it. After
a while, we crawl out of the pit, having learned enough that we’re eager to
jump back in and discover more.

For WebAssembly, you’re going to jump into the ball pit by using an online
tool called WebAssembly Studio. In December 2017, Mozilla started working
on this project as a way to provide a low-friction introduction to WebAssembly.
It’s a combination of some of their other WebAssembly tools like WasmFiddle.2

This tool is entirely online and lets you create new projects in C, Rust, or
AssemblyScript, a tool for compiling TypeScript to WebAssembly. It has gone
through bursts of community activity and contribution since its creation.

Open up your browser (any up-to-date version of Firefox, Edge, Chrome, or
Safari should work) and point it at webassembly.studio. You’ll come to a screen
that presents the following options for creating a new project:

• Empty C Project
• Empty Rust Project
• Empty AssemblyScript Project
• Hello World in C
• Hello World Rust Project

Choose “Empty Rust Project” and then click the Create button. This will create
a new project within WebAssembly Studio, including a README.md file, a src
directory, and the file you want to explore: main.rs. You’ll see the following code:

#[no_mangle]
pub extern "C" fn add_one(x: i32) -> i32 {

x + 1
}

2. wasdk.github.io/WasmFiddle/

• 10

• Click HERE to purchase this book now. discuss

https://webassembly.studio
https://wasdk.github.io/WasmFiddle/
http://pragprog.com/titles/khrust
http://forums.pragprog.com/forums/khrust

The WebAssembly Studio site, with its almost entirely black color scheme,
doesn’t make for print-friendly screenshots so none have been included here.

If you’re familiar with Rust, then this should be self-explanatory. If you’re
new to Rust, don’t worry—you’ll spend quite a bit of time working through
Rust’s syntax throughout the book. This code listing defines a function that
adds 1 to a 32-bit signed integer, returning that value in a signed 32-bit
integer. Believe it or not, this code can produce a WebAssembly module.

Using Rust’s no_mangle macro tells the compiler not to change the signature
of the function during compilation. As you’ll see in upcoming chapters, there
are some aspects of executing WebAssembly that require some naming con-
ventions.

Click the Build and Run button and you’ll see the blue bar on the bottom of
the editor flash. Then, the white square canvas in the bottom right-hand
corner will display the number 42.

Congratulations, you’ve just written, compiled, and executed your first
WebAssembly module. Where did the number 42 come from? Take a look at
the main.js file by clicking on it in your browser:

fetch('../out/main.wasm').then(response =>
response.arrayBuffer()

).then(bytes => WebAssembly.instantiate(bytes)).then(results => {
instance = results.instance;
document.getElementById("container").innerText = instance.exports.add_one(41);➤

}).catch(console.error);

Don’t worry if some of this JavaScript looks unfamiliar to you—it’ll be second
nature by the time we’re done. The indicated line of code invokes the add_one
function in the WebAssembly module and places the result value inside the
container DOM element. And now you’ve built a WebAssembly module that
adds 1 to any number. It might not be all that impressive, but you’ve taken
that first leap into WebAssembly.

The pattern of writing Rust code, compiling to WebAssembly, and then running
the module in a browser is one that you’ll repeat many times throughout this
book. For now, though, let’s take a step back from this code and take a look
at what makes WebAssembly tick so you can have a better idea of what’s
happening in the preceding example.

• Click HERE to purchase this book now. discuss

Introducing WebAssembly • 11

http://pragprog.com/titles/khrust
http://forums.pragprog.com/forums/khrust

Understanding WebAssembly Architecture
In this section, you’ll get a good look inside the engine that makes
WebAssembly work. Its unique architecture makes it incredibly powerful,
portable, and efficient—though this power comes with some limitations.

Stack Machines
The type of computer that you’re using right now is likely a Register Machine.
Laptops, desktops, mobile devices, virtual machines, even microcontrollers
and embedded devices are register machines. A register machine is a machine
(physical or virtual) where the processor instructions explicitly refer to certain
registers, or data storage locations, on the processor. Accessing these registers
is fast and efficient because the data is available directly within the CPU.

For example, if you want to add two numbers together, you’d use the ADD
instruction and you’d pass it the names of two registers as parameters, as
shown in this bit of x86 assembly:

ADD al, ah

In the preceding code, the values contained in ah and al will be added together,
with the result stored in al.

WebAssembly is a stack machine. In a stack machine, most of the instructions
assume that the operands are sitting on the stack, rather than stored in
specified registers. The WebAssembly stack is a LIFO (Last In, First Out) stack.
If you’re unfamiliar with the concept of a stack: it is as its name implies—
values are piled (stacked) on top of each other, and unlike arrays where you
can access any data regardless of location in the pile, stacks only allow you
to pop data off or push data onto the top.

To add two numbers in a stack machine, you push those numbers onto the
top of the stack. Then you push the ADD instruction onto the stack. The two
operands and the instruction are then popped off the top and the result of
the addition is pushed on in their place.

There are a number of advantages to a stack machine that made it an
appealing choice for WebAssembly: their small binary size, efficient instruction
coding, and ease of portability just to name a few.

There are some fairly well-known stack machines, including the Java Virtual
Machine (JVM) and the bytecode executor for the .NET Common Language
Runtime. In the case of those virtual machines, developers are spared the

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/khrust
http://forums.pragprog.com/forums/khrust

effort of writing assembly or thinking in prefix or Polish3 (where the operator
comes first) notation because of the intermediate steps and code generation
happening behind the scenes.

Data Types
Admit it—you’ve been spoiled. Modern programming languages with hashes,
lists, arrays, sets, extra-large numbers, and tuples have spoiled you. These
languages also probably let you create your own types through structs or
classes. Some of them even let you overload operators, and some of those
overloads can even work on custom types. The world is your oyster and you
have few limits. That is not the world of WebAssembly. As their name should
imply, assembly languages are designed to be made up of primitives that can
be used as building blocks by higher level languages.

WebAssembly 1.0 has exactly four data types:

DescriptionType

32-Bit Integeri32
64-Bit Integeri64
32-Bit Floating-Point Numberf32
64-Bit Floating-Point Numberf64

One aspect of this relatively limited set of data types is that WebAssembly
doesn’t assign any intrinsic signed-ness to numbers as they’re stored. The
assumption of whether a number is signed or unsigned is only performed at
the time of an operation. For example, while there’s only one i32 data type,
there are signed and unsigned versions of that type’s arithmetic operators,
e.g. i32.add and i32.add_u.

When you’re using a high-level language that compiles to WebAssembly on
your behalf, you shouldn’t have to worry about this subtlety. But when you’re
writing raw Wasm in the text format by hand, it could trip you up in unex-
pected ways.

Control Flow
WebAssembly’s handling of control flow is a little different than other, less
portable assembly languages. WebAssembly goes to great lengths to ensure
that its control flow can’t invalidate type safety, and can’t be hijacked by
attackers even with a “heap corruption”4-style attack in linear memory. For

3. en.wikipedia.org/wiki/Polish_notation
4. https://pdfs.semanticscholar.org/14f1/4b032235c345dfb3b3ecc8a879bbe4072407.pdf

• Click HERE to purchase this book now. discuss

Understanding WebAssembly Architecture • 13

https://en.wikipedia.org/wiki/Polish_notation
https://pdfs.semanticscholar.org/14f1/4b032235c345dfb3b3ecc8a879bbe4072407.pdf
http://pragprog.com/titles/khrust
http://forums.pragprog.com/forums/khrust

example, many assembly languages allow easily exploited blind jump instruc-
tions, whereas you’ll discover that WebAssembly does not. This additional
layer of safety pairs well with the safety-first philosophy of Rust.

Wasm control flow is accomplished the same way everything else is within a
stack machine—by pushing things onto, and popping things off of, the stack.
For example, with an if instruction, if whatever is at the top of the stack
evaluates as true (non-zero), then the if branch will be executed.

Take a look at an example of the if statement in action:

(if (i32.eq (call $getHealth) (i32.const 0))
(then (call $doDeath))
(else (call $stillAlive))

)

In this code, if our hypothetical player’s health has reached 0, then we’ll call
the doDeath function, otherwise we’ll call the stillAlive function. All those seem-
ingly extra parentheses will make sense later in the chapter.

WebAssembly has the following control flow instructions available:

DescriptionInstruction

Marks the beginning of an if branching instruction.if
Marks the else block of an if instructionelse
A labeled block used to create loopsloop
A sequence of instructions, often used within expressionsblock
Branch to the given label in a containing instruction or blockbr
Identical to a branch, but with a prerequisite conditionbr_if
Branches, but instead of to a label it jumps to a function index
in a table

br_table

Returns a value from the instruction (1.0 only supports one
return value)

return

Marks the end of a block, loop, if, or a functionend
No self-respecting assembly language is without an operation
that does nothing

nop

Linear Memory
As you work with linear memory, you’ll truly begin to appreciate the extent
to which modern high-level languages have spoiled you. With most languages,
you can quickly and easily create a new instance of something on the heap
with an operator like new.

• 14

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/khrust
http://forums.pragprog.com/forums/khrust

Internally, the compiler knows the size of this thing (or has some trick to
compensate for not knowing). When you pass an instance of something to a
function, the compiler knows whether you’re passing a pointer or a value and
how to arrange that value on your stack or heap in order to make the data
available to a function.

WebAssembly doesn’t have a heap in the traditional sense. There’s no concept
of a new operator. In fact, you don’t allocate memory at the object level because
there are no objects. There’s also no garbage collection (at least not in the
1.0 MVP).

Instead, WebAssembly has linear memory. This is a contiguous block of bytes
that can be declared internally within the module, exported out of a module,
or imported from the host. Think of it as though the code you’re writing is
restricted to using a single variable that is a byte array. Your WebAssembly
module can grow the linear memory block in increments called pages of 64KB
if it needs more space. Sadly, determining if you need more space is entirely
up to you and your code—there’s no runtime to do this for you.

This image with variables and byte offsets illustrates just one way to store
data in a block of linear memory (how you choose to use and fill linear mem-
ory is entirely up to you and your code):

var1 [0...39] var2 [40...79] var3 [80...119] unused

In addition to the efficiency of direct memory access, there’s another reason
why it’s ideal for WebAssembly: security. While the host can read and write
any linear memory given to a Wasm module at any time, the Wasm module
can never access any of the host’s memory.

Direct DOM Access Is an Illusion

If you’ve seen WebAssembly demos that look like they’re directly accessing the
browser DOM from inside the module—that’s an illusion. The host and module are
sharing a block of linear memory, and the host is choosing to execute bespoke Java-
Script to translate the contents of that shared memory area into updates to the DOM,
just like you saw at the beginning of this chapter. This may change in future versions
of WebAssembly, but for now, this remains little more than smoke and mirrors.

As you’ll see in the coming chapters, linear memory is crucial to being able
to create powerful applications with WebAssembly. Before using high-level
languages like Rust, you should learn how to manipulate linear memory

• Click HERE to purchase this book now. discuss

Understanding WebAssembly Architecture • 15

http://pragprog.com/titles/khrust
http://forums.pragprog.com/forums/khrust

manually so you can appreciate the extent of the work done on your behalf
by tools and code generation and understand the impact of your designs.

• 16

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/khrust
http://forums.pragprog.com/forums/khrust

