Extracted from:

Programming WebAssembly with Rust

Unified Development for Web, Mobile, and Embedded Applications

This PDF file contains pages extracted from Programming WebAssembly with Rust,
published by the Pragmatic Bookshelf. For more information or to purchase a
paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2019 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina


http://www.pragprog.com

Th
Pra ematic

ogrammers

Programming
WebAssembly with Rust

Unified Development for Web, Mobile,
and Embedded Applications

Kevin Hoffman
edited by Andrea Stewart



Programming WebAssembly with Rust

Unified Development for Web, Mobile, and Embedded Applications

Kevin Hoffman

The Pragmatic Bookshelf

Raleigh, North Carolina



Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic

Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow
Managing Editor: Susan Conant
Development Editor: Andrea Stewart
Copy Editor: Jasmine Kwityn
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-636-5
Book version: P1.0—March 2019


https://pragprog.com
support@pragprog.com
rights@pragprog.com

For my grandfather—Walter K. MacAdam—
inventor, tinkerer, and IEEE president. He
quietly supported my exposure to computers
and programming throughout my childhood,
oftenin ways I didn’t know until after his death.
I always wanted to grow up to be like him, and
I only wish he could’ve seen this boolk.



Introduction

I'm old enough to have lived through quite a few seismic changes in the way
developers build software and the kinds of products we can build. I was just
starting my career when DPMI gave us native access to 32-bit integers, allowed
unfettered access to a heap greater than 640k, and enabled the creation of
ground-breaking games like DOOM. I remember the potential behind Java’s
promise of write once, run anywhere. I was there when small, local communi-
ties built around dial-up bulletin board systems (BBSes) faded as the world
became a single, digital community riding the wave of the Internet’'s surge
toward ubiquity. I experienced the shift in solution design from client/server
to fat server to fat client and back again, today landing on cloud native
applications, microservices, and independent functions where everything
including our infrastructure is a service.

I remember the web’s growth from a billion archipelagos of text (often blinking!)
and Under Construction signs where the coolest places were the ones with
the most intricate full-page background images, to the vast, sprawling engine
of commerce, communication, lifestyle, and social connection that it is today.
The web has gone from a place where only an elite few dabbled in that strange
new world to a place where millions of people spend their days coding some
of the most powerful and complex applications of the modern era.

I firmly believe that we stand on the precipice of another seismic change—
WebAssembly. This new technology holds within it the potential to radically
change how developers build applications for the web. Moreover, as you'll see
throughout this book, WebAssembly is more than just a new pebble thrown
into the ocean of web technologies. It’s a tsunami that can change not only
how consumers interact with and how developers build applications but also
fundamentally alter the kinds of applications we can create. It may even
transform our core definition of the word application.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/khrust
http://forums.pragprog.com/forums/khrust

Introduction ® viii

Today’s Web Technology

Today’s web is a veritable playground for developers. You have the luxury of
easy access to broadband speeds (with exceptions). Browsers are faster and
more powerful than they've ever been, and the workstations people use to
run those browsers have oodles of RAM, storage, and multiple cores—even
the mobile devices.

Today’s JavaScript is nothing like the primordial 1995 JavaScript that drew
so much ire from the developer community. It dominates the web development
landscape so much that its own ubiquity has become something of a joke or
a meme. Competition between browser vendors (they didn’t call it the
browser wars for nothing) has spurred years of refining the way their products
execute JavaScript, which will be a key discussion point when you get into
the details of browser-hosted WebAssembly.

Modern browsers have virtual machines responsible for JavaScript execution.
Internally they optimize and produce a form of bytecode from processed
JavaScript. This, coupled with more memory and processing power, means
that JavaScript is actually fast. Not just a little bit fast, but it’s so fast you
can play full, grade-A video games in the browser. Applications can perform
complex calculations, run machine learning models, process vast amounts
of data, and otherwise treat the browser like an operating system.

Frameworks like React, Angular, Backbone, VueJS, and countless others have
made a dramatic impact on how web applications are built. Modern web
applications can render incredibly dense user interfaces like what you see on
Facebook or YouTube, all while receiving real-time events published from
servers in the cloud to provide a level of interaction that’s now such a ubiqui-
tous feature that web sites that don’t provide this new level of real-time
interaction are often publicly shamed and doomed to fail.

Nothing in the rest of this book that extols the virtues of WebAssembly should
take away from the fact that the modern, programmable web is a giant virtual
toy store, ripe for the plundering by eager developers. For any avid learner of
technology, it’s a great time to be alive (and probably learn some JavaScript).

The Tech of Tomorrow

WebAssembly is currently a 1.0 product, having just reached its first MVP
(Minimum Viable Product). As with most 1.0 products, it’'s bound to experience

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/khrust
http://forums.pragprog.com/forums/khrust

Who This Book Is For ® ix

some growing pains and points of friction, and we’ll go over those in depth
as they come up in this book. As you look at the current state of WebAssembly
and its limitations, you might get discouraged and feel the urge to give up
and wait for things to get more mature. But I think the time is right to start
learning and developing with this incredible new technology, and there are
already many WebAssembly 1.0 products deployed and running in the wild
and more appearing every day. In the span between two edits of this chapter,
someone released a virtual machine built in WebAssembly that runs Windows
95 in a browser.

The good news is that the experience will only improve over time. The tooling
will get better, the interface between the browser and WebAssembly modules
will get better, support for non-browser hosts will get better, and the number
of tested and proven use cases will grow. In short, as time goes on, every
aspect of the development of WebAssembly modules will improve.

I am convinced that WebAssembly is at the tip of the next wave of truly
paradigm-shifting changes in the programmable Internet. I did indeed mean
to say Internet and not just web. The distinction might seem subtle, but I'm
also thoroughly convinced that the browser as a host for WebAssembly mod-
ules is just the tip of the iceberg. WebAssembly is going to join the long line
of game-changing innovations in the history of the Internet and fundamentally
alter our concept of applications.

Who This Book Is For

This book is for anyone who wants to build web applications. Whether you
have had just a little bit of JavaScript exposure or whether you are a sea-
soned professional with dozens of React and Redux applications under your
belt, WebAssembly has the potential to change the way that you build apps
and the power of those applications in a way that few technologies before
ever have.

Whether you consider yourself a front-end, back-end, embedded, or any
other kind of developer—this book is for you. Compiling other languages to
WebAssembly means you get to use familiar development life cycles and
toolchains and build and test strongly-typed, powerful code.

Finally, if you think that there is more to this WebAssembly thing than just
the web applications, then you will enjoy this book as well as we build
WebAssembly interpreters in Rust and run them on Raspberry Pis to control

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/khrust
http://forums.pragprog.com/forums/khrust

Introduction ® x

hardware via GPIO. WebAssembly holds a lot of promise for many different
types of developers, including the promise of unifying back- and front-end
coding experiences.

Why Rust?

Rust is a systems language that compiles to native binaries on any number
of operating systems and hardware architectures. It is fast, its binaries take
up very little space and have a small memory footprint, and is designed from
the ground up to avoid accidental mutation, null referencing, and data races.
In fact, the compiler will check your code and prevent you from making those
mistakes.

But I chose Rust for this book for reasons beyond just the language syntax
and its powerful compiler. What excited me about Rust was how quickly it
embraced WebAssembly. While other languages right now can compile code
to WebAssembly, the sheer number of libraries and tools available within the
Rust community for WebAssembly is staggering. It is the enthusiasm, support,
and rapid pace of advancement in the Rust WebAssembly community that
influenced my decision to use Rust for this book.

What You'll Learn

This book is divided up into three main parts:

Building a Foundation
As you build a foundation, you’ll learn the fundamentals and the core
architecture of WebAssembly, including what it can and cannot do and
how you can develop basic applications. By the time you reach the end
of this section, you'll be able to create a Checkers engine written entirely
in raw WebAssembly.

Interacting with JavaScript

Building on your solid WebAssembly foundation, you’ll move on to using
Rust to create your WebAssembly modules. You'll start with the basics
of creating a Rust version of your Checkers engine, and then you’ll move
on to using code generation, advanced tooling, and macros to build pow-
erful web applications that interact with JavaScript. By the end of this
section, you’ll be able to write a multiuser, real-time chat application in
Rust that compiles to WebAssembly.

Working with Non-Web Hosts
Once you've had your first taste of the power of WebAssembly, it’s time
to take it to the next level and start working with non-web hosts.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/khrust
http://forums.pragprog.com/forums/khrust

What You'll Learn ® xi

WebAssembly is about far more than just building things for the web,
and you’ll see this firsthand as you create modules that control LED
patterns for lights attached to a Raspberry Pi and, as your final project,
you create a fully multiplayer arena battle game that lets developers pit
their WebAssembly code against each other in a battle to the death.

Now it’s time to get coding!

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/khrust
http://forums.pragprog.com/forums/khrust



