
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Puzzle 15

The Vacuous Boomerang

src/commonMain/kotlin/com/example/puzzles/control/boomerang/ThrowReturn.kt
fun main() {

val boomerang = throw return
println("The value is: $boomerang")

}

Guess the Output

Try to guess the output (or error) before moving to the next page.

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/kotlinbt/code/src%2FcommonMain%2Fkotlin%2Fcom%2Fexample%2Fpuzzles%2Fcontrol%2Fboomerang%2FThrowReturn.kt
http://pragprog.com/titles/kotlinbt
http://forums.pragprog.com/forums/kotlinbt

The program completes successfully, and displays no output.

Discussion
In a valid throw statement, the input slot on the right of the throw keyword must
be filled by a Throwable exception. A return statement isn’t a value at all, let alone
a Throwable—so why is it a valid way to fill this slot?

Any time Kotlin’s type checker is expecting a value of a specific type, it’ll also
accept an instruction that prevents the program from reaching the place
where the value is required. In this puzzle, we’re exploiting that twice in quick
succession—first when we use throw in place of a real value for the boomerang
variable, and again when we use return in place of the exception to throw.

Value Not Found
You probably already know that any time you don’t want to return a value
from a function, you can throw an exception instead:

fun getName(): String {
if (hasName) { return myName } else { throw Exception("I have no name") }

}

Anyone calling this function can still safely use the result as a String:

val name: String = getName() // ✓ This is fine

Either getName() returns a String, or it throws an exception that causes the code
to exit without assigning a value to the name variable at all. So if name receives
a value, that value will always be a String. In fact, that’s still true even if get-
Name() always throws and never returns:

fun getName(): String { throw Exception("I have no name") }
val name: String = getName() // ✓ Still fine

If you think back to Puzzle 11, It’s Over Nine Thousand!, on page ?, you
might recognize this as another example of a vacuous truth. The getName()
function never returns a value, so our code isn’t lying when it says that every
value returned by getName() will always be a String.

Meaningless Expressions
Now let’s remove the function altogether, and just run its code directly:

val name: String = throw Exception("I have no name") // ✓ Still fine!

Puzzle 15. The Vacuous Boomerang • 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/kotlinbt
http://forums.pragprog.com/forums/kotlinbt

Just like a function, an expression in Kotlin is allowed to throw an exception
instead of producing a value. And an exception isn’t the only way to prevent
the code from reaching the place where a value is used. For example, inside
a function, a return instruction achieves the same by exiting the function:

fun main() {
val name: String = return // ✓ This is fine: 'name' never gets a value

}

In our puzzle program, we use throw instead of providing a value for the
boomerang variable, and then we use return instead of providing an exception
for the throw statement. Since we didn’t specify any particular type for the
valueless boomerang variable, the compiler infers that its type is Nothing:

fun main() {
val boomerang: Nothing = throw return

}

This doesn’t mean that boomerang contains an object whose type is Nothing.
Instead, it means that boomerang can never contain any value at all—because
the assignment will always exit before it completes. The Nothing type is Kotlin’s
way of describing an outcome that can never happen. You can even use it to
write your own functions that, like throw, can be used in place of any value:

fun myError(): Nothing { throw Exception("Something went wrong!") }
val name: String = myError() // ✓ 'myError' never returns a non-String value

Nothing or Never

Nothing is Kotlin’s bottom type—a type that can act as a subtype of
every other type, because it has zero possible values. Some other
languages call their bottom type Never or NoReturn.

Here are the key points to remember:

• You can use jump instructions like return and throw in place of any value,
because they divert the program before the value is ever actually used.

• Expressions that don’t complete have a type of Nothing—Kotlin’s way of
describing a situation that never happens, or a value that can never exist.

Further Reading
Returns and jumps

https://kotlinlang.org/docs/returns.html

Short Circuits, Bottom Types, and the Vacuous Boomerang
https://sam-cooper.medium.com/2114bca82b3f

• Click HERE to purchase this book now. discuss

Further Reading • 5

https://kotlinlang.org/docs/returns.html
https://sam-cooper.medium.com/2114bca82b3f
http://pragprog.com/titles/kotlinbt
http://forums.pragprog.com/forums/kotlinbt

