The .
Pragmatic
Programmers

Kotlin Brain Teasers

Exercise Yourn Mind

Sam Cooper
edited by Dawn Schanafelt

This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Something From Nothing?
N\ J

src/commonMain/kotlin/com/example/puzzles/operators/addnull/AddingNulls.kt
fun main() {
val result = null + null

if (result == null) {
println("It's null")
} else {
println("It's a ${result::class.simpleName} with the value: $result")

}

Guess the Output

Try to guess the output (or error) before moving to the next page.

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/kotlinbt/code/src%2FcommonMain%2Fkotlin%2Fcom%2Fexample%2Fpuzzles%2Foperators%2Faddnull%2FAddingNulls.kt
http://pragprog.com/titles/kotlinbt
http://forums.pragprog.com/forums/kotlinbt

Puzzle 1. Something From Nothing? * 4

The program displays the following output:

It's a String with the value: nullnull

Discussion
Why does adding null + null produce a String?

Kotlin’s plus operator (+) can do different things—adding numbers, merging
lists, joining strings, and so on—depending on the types of its inputs. Of these
possible operations, it turns out that string concatenation is the only one
that can accept a null value on both sides. That leaves Kotlin with no choice
but to interpret null + null as an attempt to combine two nullable strings.

Anytime you use null in a string-building operation like this, Kotlin will replace
it with the literal text "null". We've provided two null inputs, so we get two copies
of the word "null", which are then stitched together just like any other pair of
strings would be.

Operator Overloads

This is a fun puzzle, because null + null looks like a meaningless and illogical
expression that shouldn’'t do anything at all—especially in a strongly typed
language such as Kotlin. There’s certainly no reason to write it in a real pro-
gram. So what can it teach us?

First, it’s a great demonstration of the way an operator can be overloaded.
You probably already know how to overload a function—just make a second
function with the same name, but with different input types. Well, operator
overloads work in exactly the same way. In fact, Kotlin’s plus operator (+) is
really a shorthand for calling a function named plus().

That means our null + null expression is the same as writing null.plus(null). To
compile and execute it, Kotlin will search through all the plus() functions it
can find, looking for one that can accept those values as inputs.

A null value will be accepted by any type that has a question mark (?) after it.
For instance, the Any? type will accept null values, while the base type Any won't.
Every Kotlin type has a nullable counterpart like this, including basic types
like strings and numbers. And sure enough, in the API documentation® you

3. https://kotlinlang.org/api/core/kotlin-stdlib/kotlin/plus.html

« Click HERE to purchase this book now. discuss

https://kotlinlang.org/api/core/kotlin-stdlib/kotlin/plus.html
http://pragprog.com/titles/kotlinbt
http://forums.pragprog.com/forums/kotlinbt

Further Reading ® 5

can find the overloaded plus() function we just used, complete with its
null-accepting input types on both sides:

operator fun String?.plus(other: Any?): String

There are no other matching plus() functions with two nullable inputs, so the
program selects this one automatically.

Member functions and extension functions can both be used as operator
overloads. This particular version of plus() is an extension, declared outside
the String class, which is what allows it to use a null receiver. Create your own
operator functions, either as members of your own classes or as extensions
on existing types, to make operators like plus (+) work with any inputs you
like—nullable or not!

Displaying Nulls

The second thing this puzzle shows is how null interacts with text. A null value
is just an unfilled slot in your program’s memory. How do you transcribe the
contents of a variable when that variable doesn’t hold any data?

Instead of showing nothing, or worse, producing an error, Kotlin will represent
a null value using the literal text "null":

val name: String? = null
println("Hello, $name!") // — "Hello, null!"

You'll see this automatic null-to-text conversion at work in a few different
places, and it’s important to be aware of it. When you're generating logs or
diagnostic messages, it might be exactly what you need. But you probably
don’t want to display the word "null" to your end users, or worse, store it in a
database field that was supposed to be blank.

That leaves us with two key takeaways from this puzzle:

e Remember that many operators are backed by overloadable functions.
This will help you understand and even extend their behavior.

e When you're building strings, don’t forget to consider how you're handling
null values, and whether the literal word "null" is an appropriate replacement.

Further Reading

Operator overloading
https://kotlinlang.org/docs/operator-overloading.html

Null safety
https://kotlinlang.org/docs/null-safety.html

« Click HERE to purchase this book now. discuss

https://kotlinlang.org/docs/operator-overloading.html
https://kotlinlang.org/docs/null-safety.html
http://pragprog.com/titles/kotlinbt
http://forums.pragprog.com/forums/kotlinbt

