Extracted from:

Programming WebRTC

Build Real-Time Streaming Applications for the Web

This PDF file contains pages extracted from Programming WebRTC, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or
PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2023 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina

http://www.pragprog.com

Th
Pr. ematic
Ograimimers

Programming
WebRTC

Build Real-Time Streaming
Applications for the Web

Karl Stolley

edited by Michael Swaine

Programming WebRTC

Build Real-Time Streaming Applications for the Web

Karl Stolley

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2023 The Pragmatic Programmers, LLC.

Allrights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-903-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: B5.0—February 6, 2023

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Restructuring WebRTC Callbacks with Closures

So far, rewriting the peer-to-peer code to work on multipeer calls has been
pretty straightforward. Well, fairly straightforward. Fine—straightforwardish,
the way an alien abduction is straightforward. However you want to spin it,
your work towards a multipeer WebRTC app has required shifting some logic
around on the signaling callbacks and introducing a new id variable to a
number of functions.

By contrast, the revisions you’ll make to your WebRTC callbacks require
rethinking your approach to callbacks entirely, especially how the callbacks
themselves are registered.

Let’s step back and think about peer IDs for a moment: each of your WebRTC
callbacks needs to be associated with a specific peer ID’s RTCPeerConnection
instance. Accessing IDs wasn’t a problem with signaling callbacks: peer IDs
are included in all data returned by the signaling channel’s events. But neither
the RTCPeerConnection object nor the data its events return have any access to
peer IDs. And that’s a problem, because unique peer IDs are central to the
way we're architecting multipeer, mesh-networked calls.

Providing the correct ID value to each WebRTC callback that needs it is a
trickier proposition than it might sound. But it’s not impossible. Let’s start
big-picture and open up the registerRtcCallbacks() function, modify it to take an
id argument that will be passed into the function from within establishCallFeatures(),
and prepare each of its event assignments so that we're passing in the ID for
a specific peer. Remember that establishCallFeatures() is executed for each peer
on a call, thanks to the logic you wrote just a moment ago in Fleshing Out
the Skeletal Signaling Callbacks, on page 2

demos/multipeer/js/main.js

/**
* WebRTC Functions and Callbacks
*/

function registerRtcCallbacks(id) {
const peer = $peers.get(id);
peer.connection
.onconnectionstatechange = handleRtcConnectionStateChange(id);
peer.connection
.onnegotiationneeded = handleRtcConnectionNegotiation(id);
peer.connection
.onicecandidate = handleRtcIceCandidate(id);
peer.connection
.ontrack = handleRtcPeerTrack(id);

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://pragprog.com/titles/ksrtc
http://forums.pragprog.com/forums/ksrtc

o4

Just like you did with addStreamingMedia(), you're setting up a function-scoped
peer variable inside registerRtcCallbacks(). But something probably looks off about
those rewritten callback assignments. In Writing Named Functions as Call-

callback functions are passed in or assigned by reference, without parentheses.
But here, not only are you calling functions with parentheses, but you're even
passing each of them an id value. That will blow up all of the peer-to-peer
WebRTC callbacks you wrote previously, which destructured data returned
by the WebRTC events that triggered them.

That’s a big problem: the rules have not changed on callback assignments.
The callbacks assigned to WebRTC events must still reference functions to
be executed when each associated event fires—now with the added complex-
ity of firing on a specific peer.connection instance, too.

What we need to do, then, is restructure all of the peer-to-peer WebRTC
callback functions to create closures.'® In other words, each of the existing
WebRTC callbacks must be rewritten so as to return a function when executed.
When a WebRTC event fires, it will execute the returned function, which must
be capable of receiving and acting on the WebRTC event’s data.

Let’s try expressing those abstract ideas as real code. Right below the register-
RtcCallbacks() function definition, find the handleRtcPeerTrack() callback. Think back
to how you wrote that function to display the media streaming in from a single
remote peer:
// main.js, peer-to-peer logic
function handleRtcPeerTrack({ track }) {
console.log(Handle incoming ${track.kind} track...")
$peer.mediaTracks[track.kind] = track;
$peer.mediaStream.addTrack(track);

displayStream($peer.mediaStream, '#peer');
}

We must do two things to rewrite that callback to create a closure: first, we’ll
grab the ID argument that’s being passed into handleRtcPeerTrack() from within
registerRtcCallbacks(). And then we’ll change the body of handleRtcPeerTrack() to return
a function—an anonymous but otherwise identical version of the original
callback that you wrote—which will be called when the track event actually
fires the peer connection for that ID value:

demos/multipeer/js/main.js
function handleRtcPeerTrack(id) {
return function({ track }) {

10. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
http://pragprog.com/titles/ksrtc
http://forums.pragprog.com/forums/ksrtc

Restructuring WebRTC Callbacks with Closures ¢ 5

const peer = $peers.get(id);

console.log(‘Handle incoming ${track.kind} track from peer ID: ${id}’);

peer.mediaTracks[track.kind] = track;

peer.mediaStream.addTrack(track);

displayStream(peer.mediaStream, id);

3

}
If you've not worked with closures before, the idea behind them is that the
returned function is capable of holding onto the values of any variables, like
id, from the scope of the outer function: in this case, handleRtcPeerTrack(). The
anonymous function returned by handleRtcPeerTrack() is what’s actually assigned
to the peer.connection.ontrack event property. Note that the anonymous function
is still neatly destructuring the track from the event, too.

In slightly more concrete terms: the new function returned by handleRtcPeerTrack()
must fire on the track event for a specific remote peer. Preserving the reference
to that peer’s ID is made possible by the closure. The ID value makes it pos-
sible to continue to preserve the tracks and stream on the peer’s record in
the $peers map. The peer’s ID itself must also be passed into the displayStream()
function you wrote back on page ?.

In slightly more nerdy terms: the inner anonymous function has access to
the outer function’s lexical scope, including the id value, at the moment the
anonymous function is defined. That’s the magic of closures in JavaScript:
we can preserve custom values for use inside a callback function without
messing with the set structure of arguments passed into the callback at
runtime.

Enough nerding out. Let’s keep going. If you're still feeling uncertain about
closures, that’s okay. Their behavior should become clearer as you write a
few more. Find the “Reusable WebRTC Functions and Callbacks” area of your
main.js file and rewrite those three callbacks to use closures, too. You can go
in order, and prove to yourself what a champ you are by starting with handleRtc-
ConnectionNegotiation(), which also involves the signaling channel:

demos/multipeer/js/main.js
/**
* Reusable WebRTC Functions and Callbacks
*/
function handleRtcConnectionNegotiation(id) {
return async function() {
const peer = $peers.get(id);
const selfState = peer.selfStates;
selfState.isMaking0ffer = true;
await peer.connection.setlLocalDescription();
sc.emit('signal',

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://pragprog.com/titles/ksrtc
http://forums.pragprog.com/forums/ksrtc

°6

{ recipient: id, sender: $self.id,
signal: { description: peer.connection.localDescription } });
selfState.isMaking0ffer = false;
Y

}

Here you're making use of the self states associated with a specific peer ID,
which for the sake of brevity gets its own variable assignment (selfState) for
use in the connection-negotiation callback’s logic.

Beyond that adjustment in how you reference self states, the most significant
change to handleRtcConnectionNegotiation() is on its call to the sc.emit() method. In
the peer-to-peer code, that call looked like this:

// main.js
// snip, snip...
sc.emit('signal',
{ description: $peer.connection.localDescription });
// snip, snip...

But in a multipeer setup, it’'s necessary to include the recipient and sender values
for properly routing signals over the signaling channel whenever you call
sc.emit(}—just like you did for the handleScSignal() callback in Correcting Variable

returned anonymous callback function, care of the closure around id.

See? You are indeed a closure champ. You can make quick work of rewriting
the other two reusable WebRTC callbacks as closures, too. They're less com-
plicated by comparison.

The ICE-candidate callback needs to reference an id for routing each candidate
to the correct peer:

demos/multipeer/js/main.js
function handleRtcIceCandidate(id) {

return function({ candidate }) {

sc.emit('signal', { recipient: id, sender: $self.id,
signal: { candidate } });

¥
}
We can also write a diagnostic closure on the connection state-change call-
back. It doesn’t make sense to add a class to the body in a multipeer setting
(all of the changes from multiple peers’ connection states would just clobber
each other), but what we can do instead is reference an element and add the
connection state there, assuming the element exists. Because this is meant
to be reusable code, let’s opt for a generic peerElement, so that it reads sensibly
even when there aren’t video elements as part of the interface—something

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://pragprog.com/titles/ksrtc
http://forums.pragprog.com/forums/ksrtc

YYYVYYY

Restructuring WebRTC Callbacks with Closures ® 7

we'll see in the (as yet) unwritten Chapter 8, Building Peer-to-Peer Interfaces,
. The connectionstate event will first fire immediately, likely before the peer ele-
ment has been added to the self side of the call. So we check for the element’s
existence before doing anything with it:

demos/multipeer/js/main.js
function handleRtcConnectionStateChange(id) {
return function() {
const peer = $peers.get(id);
const connectionState = peer.connection.connectionState;
// Assume *some* element will take a unique peer ID
const peerElement = document.querySelector(#peer-${id}");
if (peerElement) {
peerElement.dataset.connectionState = connectionState;
}
console.log(Connection state '${connectionState}' for Peer ID: ${id}");
b
}

When the element exists, the function preserves the connection state in a
data-connection-state attribute, care of the dataset property.'' The camelCased
dataset.connectionState property will automatically convert to a dash-styled data-
connection-state attribute in the DOM. The latest state will always replace any
older state on the data-connection-state attribute.

And with that, all of your WebRTC callbacks are properly using closures to
return id-backed anonymous functions.

11. https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/dataset

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/dataset
http://pragprog.com/titles/ksrtc
http://forums.pragprog.com/forums/ksrtc

