
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Restructuring WebRTC Callbacks with Closures
So far, rewriting the peer-to-peer code to work on multipeer calls has been
pretty straightforward. Well, fairly straightforward. Fine—straightforwardish,
the way an alien abduction is straightforward. However you want to spin it,
your work towards a multipeer WebRTC app has required shifting some logic
around on the signaling callbacks and introducing a new id variable to a
number of functions.

By contrast, the revisions you’ll make to your WebRTC callbacks require
rethinking your approach to callbacks entirely, especially how the callbacks
themselves are registered.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ksrtc
http://forums.pragprog.com/forums/ksrtc

Let’s step back and think about peer IDs for a moment: each of your WebRTC
callbacks needs to be associated with a specific peer ID’s RTCPeerConnection
instance. Accessing IDs wasn’t a problem with signaling callbacks: peer IDs
are included in all data returned by the signaling channel’s events. But neither
the RTCPeerConnection object nor the data returned by its events have any access
to peer IDs. And that’s a problem, because unique peer IDs are central to the
way we’re architecting multipeer, mesh-networked calls.

Providing the correct ID value to each WebRTC callback that needs it is a
trickier proposition than it might sound. But it’s not impossible. Let’s start
big-picture and open up the registerRtcCallbacks() function, modify it to take an
id argument that will be passed into the function from within establishCallFeatures(),
and prepare each of its event assignments so that we’re passing in the ID for
a specific peer. Remember that establishCallFeatures() is executed for each peer
on a call, thanks to the logic you wrote a moment ago in Fleshing out the
Skeletal Signaling Callbacks, on page ?:

demos/multipeer/js/main.js
/**
* WebRTC Functions and Callbacks
*/

function registerRtcCallbacks(id) {
const peer = $peers.get(id);
peer.connection

.onconnectionstatechange = handleRtcConnectionStateChange(id);➤

peer.connection
.onnegotiationneeded = handleRtcConnectionNegotiation(id);➤

peer.connection
.onicecandidate = handleRtcIceCandidate(id);➤

peer.connection
.ontrack = handleRtcPeerTrack(id);➤

}

Just like you did with addStreamingMedia(), you’re setting up a function-scoped
peer variable inside registerRtcCallbacks(). But something probably looks off about
those rewritten callback assignments. In Writing Named Functions as Call-
backs, on page ?, you read about how it’s a very big deal to make sure that
callback functions are passed in or assigned by reference, without parentheses.
But here, not only are you calling functions with parentheses, but you’re even
passing each of them an id value. That will blow up all of the peer-to-peer
WebRTC callbacks you wrote previously, which destructured data returned
by the WebRTC events that triggered them.

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://pragprog.com/titles/ksrtc
http://forums.pragprog.com/forums/ksrtc

That’s a big problem: the rules have not changed on callback assignments.
The callbacks assigned to WebRTC events must still reference functions to
be executed when each associated event fires—now with the added complex-
ity of firing on a specific peer.connection instance, too.

What we need to do, then, is restructure all the peer-to-peer WebRTC callback
functions to create closures.10 In other words, each of the existing WebRTC
callbacks must be rewritten so as to return a function when executed. When
a WebRTC event fires, it will execute the returned function, which must be
capable of receiving and acting on the WebRTC event’s data.

Let’s try expressing those abstract ideas as real code. Right below the register-
RtcCallbacks() function definition, find the handleRtcPeerTrack() callback. Think back
to how you wrote that function to display the media streaming in from a single
remote peer:

// main.js, peer-to-peer logic
function handleRtcPeerTrack({ track }) {

console.log(`Handle incoming ${track.kind} track...`)
$peer.mediaTracks[track.kind] = track;
$peer.mediaStream.addTrack(track);
displayStream($peer.mediaStream, '#peer');

}

We must do two things to rewrite that callback to create a closure: first, we’ll
grab the ID argument that’s being passed into handleRtcPeerTrack() from within
registerRtcCallbacks(). And then we’ll change the body of handleRtcPeerTrack() to return
a function—an anonymous but otherwise identical version of the original
callback that you wrote—which will be called when the track event actually
fires the peer connection for that ID value:

demos/multipeer/js/main.js
function handleRtcPeerTrack(id) {

return function({ track }) {➤

const peer = $peers.get(id);➤

console.log(`Handle incoming ${track.kind} track from peer ID: ${id}`);
peer.mediaTracks[track.kind] = track;
peer.mediaStream.addTrack(track);
displayStream(peer.mediaStream, id);

};➤

}

10. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures

• Click HERE to purchase this book now. discuss

Restructuring WebRTC Callbacks with Closures • 5

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
http://pragprog.com/titles/ksrtc
http://forums.pragprog.com/forums/ksrtc

If you’ve not worked with closures before, the idea behind them is that the
returned function is capable of holding onto the values of any variables, like
id, from the scope of the outer function: in this case, handleRtcPeerTrack(). The
anonymous function returned by handleRtcPeerTrack() is what’s actually assigned
to the peer.connection.ontrack event property. Note that the anonymous function
is still neatly destructuring the track from the event, too.

In slightly more concrete terms: the new function returned by handleRtcPeerTrack()
must fire on the track event for a specific remote peer. Preserving the reference
to that peer’s ID is made possible by the closure. The ID value makes it pos-
sible to continue to preserve the tracks and stream on the peer’s record in
the $peers map. The peer’s ID itself must also be passed into the displayStream()
function you wrote back on page ?.

In slightly more nerdy terms: the inner anonymous function has access to
the outer function’s lexical scope, including the id value, at the moment the
anonymous function is defined. That’s the magic of closures in JavaScript:
we can preserve custom values for use inside a callback function without
messing with the set structure of arguments passed into the callback at
runtime.

Enough nerding out. Let’s keep going. If you’re still feeling uncertain about
closures, that’s okay. Their behavior should become clearer as you write a
few more. Find the “Reusable WebRTC Functions and Callbacks” area of your
main.js file and rewrite those three callbacks to use closures, too. You can go
in order, and prove to yourself what a champ you are by starting with handleRtc-
ConnectionNegotiation(), which also involves the signaling channel:

demos/multipeer/js/main.js
/**
* Reusable WebRTC Functions and Callbacks
*/

function handleRtcConnectionNegotiation(id) {
return async function() {

const peer = $peers.get(id);
const self_state = peer.selfStates;
self_state.isMakingOffer = true;
await peer.connection.setLocalDescription();
sc.emit('signal',
{ recipient: id, sender: $self.id,

signal: { description: peer.connection.localDescription } });
self_state.isMakingOffer = false;

};
}

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://pragprog.com/titles/ksrtc
http://forums.pragprog.com/forums/ksrtc

Here you’re making use of the self states associated with a specific peer ID,
which for the sake of brevity gets its own variable assignment (self_state) for
use in the connection-negotiation callback’s logic.

Beyond that adjustment in how you reference self states, the most significant
change to handleRtcConnectionNegotiation() is on its call to the sc.emit() method. In
the peer-to-peer code, that call looked like this:

// main.js
// snip, snip...

sc.emit('signal',
{ description: $peer.connection.localDescription });

// snip, snip...

But in a multipeer setup, it’s necessary to include the recipient and sender values
for properly routing signals over the signaling channel whenever you call
sc.emit()—just like you did for the handleScSignal() callback in Correcting Variable
References, on page ?. The routing values are made accessible from the
returned anonymous callback function, care of the closure around id.

See? You are indeed a closure champ. You can make quick work of rewriting
the other two reusable WebRTC callbacks as closures, too. They’re less com-
plicated by comparison.

The ICE-candidate callback needs to reference an id for routing each candidate
to the correct peer:

demos/multipeer/js/main.js
function handleRtcIceCandidate(id) {

return function({ candidate }) {
sc.emit('signal', { recipient: id, sender: $self.id,
signal: { candidate } });

};
}

We can also write a diagnostic closure on the connection state-change call-
back. It doesn’t make sense to add a class to the body in a multipeer setting
(all of the changes from multiple peers’ connection states would clobber each
other), but what we can do instead is reference an element and add the con-
nection state there, assuming the element exists. Because this is meant to
be reusable code, let’s opt for a generic peer_element, so that it reads sensibly
even if you build WebRTC applications that do not include video elements as
part of the interface. The connectionstatechange event will first fire immediately,
likely before the peer element has been added to the self side of the call. So
we check for the element’s existence before doing anything with it:

• Click HERE to purchase this book now. discuss

Restructuring WebRTC Callbacks with Closures • 7

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://pragprog.com/titles/ksrtc
http://forums.pragprog.com/forums/ksrtc

demos/multipeer/js/main.js
function handleRtcConnectionStateChange(id) {

return function() {
const peer = $peers.get(id);
const connection_state = peer.connection.connectionState;➤

// Assume *some* element will take a unique peer ID➤

const peer_element = document.querySelector(`#peer-${id}`);➤

if (peer_element) {➤

peer_element.dataset.connectionState = connection_state;➤

}➤

console.log(`Connection state '${connection_state}' for Peer ID: ${id}`);
};

}

When the element exists, the function preserves the connection state in a
data-connection-state attribute, care of the dataset property.11 The camelCased
dataset.connectionState property will automatically convert to a dash-styled data-
connection-state attribute in the DOM. The latest state will always replace any
older state on the data-connection-state attribute.

And with that, all of your WebRTC callbacks are properly using closures to
return id-backed anonymous functions.

11. https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/dataset

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/dataset
http://pragprog.com/titles/ksrtc
http://forums.pragprog.com/forums/ksrtc

