
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Using a Lightweight Signaling Channel
Browsers lack a signaling channel that enables a connection to be negotiated.
The editors of the WebRTC specification have gone so far as to avoid requiring
any specific signaling technology whatsoever: you have to bring your own. So
to prepare the way to establish a WebRTC connection, we need first to select
and set up a signaling channel.

A server-based signaling channel is the most convenient option. Even a very
basic peer-to-peer application, like the one you’re writing right now, requires
both browsers to visit a URL pointing at some server on the web to download
the HTML, CSS, and JavaScript necessary to establish and support the call.
With a web server already in the mix, any server-side setup for passing a
message from one browser to another would suffice.

Technically speaking, a server-based signaling channel isn’t strictly necessary.
Two peers connecting over WebRTC could, in theory, email or even handwrite
and make no-contact delivery of their browsers’ offers and answers to set up
the peer connection—just like the two friends above could have set their coffee
date using semaphore, tin cans on a string, a dead drop, or a whole bunch
of other improbable signaling channels. But a server is going to provide the
greatest flexibility and much lower latency. It would be possible, for example,
to write your own signaling channel using WebSockets, in any server-side
language you choose: PHP, Python, Ruby, and so on.

To prevent you from getting sidetracked by all of that work, I have written a
very small server in ExpressJS6 that includes a signaling channel based on
Socket.IO.7 It’s included in the book’s sample code you already downloaded.
The signaling channel works out of the box. While you might find value in
experimenting with it, you won’t be writing much server-side code in this
book. Our focus is in the browser, because that’s where the real action is.

But before we get to work in the browser, you will better grasp the code you’re
about to write for using the signaling channel if we take a quick walking tour
of the signaling channel itself. The channel is very little and very dumb: all
it does is manage a few events and shuttle messages back and forth. It doesn’t
know about WebRTC or anything else that we might be doing. To the greatest
extent possible, it’s better to keep knowledge of WebRTC in and between
browsers. The less your signaling channel does, the easier it will be to move
your app to a different signaling channel in the future.

6. https://expressjs.com/
7. https://socket.io/

• Click HERE to purchase this book now. discuss

https://expressjs.com/
https://socket.io/
http://pragprog.com/titles/ksrtc
http://forums.pragprog.com/forums/ksrtc

The server’s signaling channel component is fewer than a dozen lines, all of
which can be reproduced here. As you’ve seen, sometimes I walk through
setting up a piece of code, line by line. Other times, I will do a dramatic reveal
of the whole thing before talking through it with you. Like here:

server.js
const namespaces = io.of(/^\/[0-9]{7}$/);

namespaces.on('connect', function(socket) {

const namespace = socket.nsp;

socket.broadcast.emit('connected peer');

socket.on('signal', function(data) {
socket.broadcast.emit('signal', data);

});

socket.on('disconnect', function() {
namespace.emit('disconnected peer');

});

});

Two features of the signaling channel set the stage for the code we’ll write in
the browser: a set of events and a precise seven-digit namespace. Let’s look
at the events first.

Exploring the Signaling Channel’s Events
The signaling channel handles seven events: three that it listens for—connect,
signal, and disconnect—and four that it emits—connected peer, signal, and disconnected
peer, plus a connect event that Socket.IO emits automatically.

When a client connects, the signaling channel will broadcast the connected peer
event to other connected clients. When a client sends a signal, the signaling
channel will rebroadcast the signal event and its data, essentially acting as
a repeater. And finally, when a client disconnects, the signaling channel will
emit a disconnected peer event.

That captures everything a basic signaling channel needs to do: listen for
connections, listen for and repeat signals, and listen for disconnections. That’s
it. The code we write in the browser to establish a peer connection will trigger
or respond to each of those events.

Namespacing the Signaling Channel
The video-call app you’re building is meant to scale: it will allow multiple
different independent pairs of peers to connect to each other simultaneously.
That is no different from how Zoom or Google Meet works. When you use

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ksrtc/code/server.js
http://pragprog.com/titles/ksrtc
http://forums.pragprog.com/forums/ksrtc

Zoom, you and the person you want to talk to must share (over some other
signaling channel!) a unique URL like https://fake-example.zoom.us/j/72072139453.
You’ll also be building unique URLs similar to that.

The opening lines of the signaling channel in server.js use a regular expression
to verify the structure of a namespace, which is similar to a meeting code
in Zoom. With a shared namespace, one pair of peers can negotiate their
connection over the namespace /0000001, while another pair can connect
simultaneously over /0000002. Their signals will never cross.

Those are very easy to guess patterns, of course, so we’ll write a function in
the browser to test or generate a random number that matches the name-
space’s expected seven-digit pattern on the server. We’ll make the namespace
easy for users to share by attaching it as a hash on the URL, something like
https://localhost/basic-p2p/#1234567. (Later in the book, we’ll use the server to gen-
erate namespaces using URL paths rather than hashes.)

At the very bottom of the main.js file, you will find a section for utility functions.
Here I’ve written a function called prepareNamespace() that takes two arguments.
The hash argument will work with an existing hash, likely as reported by the
browser from window.location.hash. The second argument, set_location, is a Boolean
value (true or false) for setting the prepared namespace on window.location.hash.
Look through the whole thing, and then let’s walk through it together.

demos/basic-p2p/js/main.js
/**
* Utility Functions
*/

function prepareNamespace(hash, set_location) {
let ns = hash.replace(/^#/, ''); // remove # from the hash
if (/^[0-9]{7}$/.test(ns)) {

console.log('Checked existing namespace', ns);
return ns;

}

• Click HERE to purchase this book now. discuss

Using a Lightweight Signaling Channel • 5

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://pragprog.com/titles/ksrtc
http://forums.pragprog.com/forums/ksrtc

ns = Math.random().toString().substring(2, 9);
console.log('Created new namespace', ns);
if (set_location) window.location.hash = ns;
return ns;

}

The local variable ns uses the replace() string method with a regular expression
and empty string to remove the # (octothorp) that window.location.hash always
returns. With the octothorp removed, the function can check the namespace’s
value against another regular expression pattern: /^[0-9]{7}$/. That is almost
identical to the signaling channel’s pattern you already saw in server.js (its
pattern must also check for the slash that Socket.IO prepends to namespaces).

Demystifying Regular Expressions

If you’ve never worked with regular expressions before, or if the phrase regular
expressions makes your palms sweat and your chest tighten, please try to
relax. Their basic purpose is pretty easy to summarize: regular expressions
describe patterns.

Let’s examine the regular-expression pattern /^[0-9]{7}$/ from the inside out.
A pattern that matches a sequence of seven digits, 0 through 9, looks like
this: [0-9]{7}. [0-9] represents all numbers in the range zero to nine. The seven
in curly braces, {7}, means that we want the numbers in the range to appear
seven times in a row. Easy enough, right? You’d think. The problem is that
any string of text that includes seven digits in a row—no matter what other
text the string includes—would still satisfy a regular expression pattern
specifying seven sequential digits.

To make sure the namespace is only ever exactly seven digits and therefore
prevent potentially malicious characters from ever reaching the signaling
channel, the pattern opens with a caret: ^. The caret is a regular-expression
symbol that marks the very beginning of a one-line string. Similarly, a dollar
sign $ marks the very end of the string. Without the dollar sign, the namespace
0011222-EVIL-BUSINESS-HERE! would still match, because it opens with seven digits.

That kind of thing is probably why most people find themselves so confused
and angered by regular expressions: they are incredibly, infuriatingly literal.
Hey, you said you wanted seven digits–I found you seven digits! Ask regular
expressions for a haircut, and they’ll cut exactly one of your hairs. They are
the dad jokes of computer programming.

Back to the pattern at hand: bookending the regular expression are slashes,
/, which demarcate regular expressions in JavaScript, just like quotation
marks or backticks demarcate strings. Put it all together, and this little creep

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ksrtc
http://forums.pragprog.com/forums/ksrtc

should look a tad less imposing: /^[0-9]{7}$/. Seven digits in a row, and seven
digits only. No more, no less—and nothing else. That’s the pattern for our
namespace.

Making Use of the Namespace

And now back to the prepareNamespace() function definition itself: With the reg-
ular expression in place, we call the test() method on it and pass along the
namespace we have on hand, ns. If the test passes, we return the octothorp-
free namespace, ns.

But if the test fails because either the hash doesn’t match our pattern or there’s
no hash at all, the function generates a new random hash in a complex one-liner:

demos/basic-p2p/js/main.js
ns = Math.random().toString().substring(2, 9);

That generates a random number and converts it to a string. The substring()
method gets called to remove the first two characters: numbers generated by
Math.random() always begin with 0. The second argument to substring(), 9, ensures
that we get a seven-digit number, thanks to the first two characters being
discarded by the first argument, 2.

If set_location is true, the new namespace gets set on the URL by assigning it to
window.location.hash.

Finally, the function returns the value of ns, which is the brand-new, randomly
generated hash.

With the prepareNamespace() function definition in place, you can put it to work
at the top of your file and assign its output–the returned namespace–to a
namespace variable:

demos/basic-p2p/js/main.js
const namespace = prepareNamespace(window.location.hash, true);

Let’s do something user-facing with the namespace variable. In the user-interface
area of the JavaScript file, add another one-liner that sets the h1 text to wel-
come users to a correctly namespaced room:

demos/basic-p2p/js/main.js
/**
* User-Interface Setup
*/

document.querySelector('#header h1')➤

.innerText = 'Welcome to Room #' + namespace;➤

document.querySelector('#call-button')
.addEventListener('click', handleCallButton);

• Click HERE to purchase this book now. discuss

Using a Lightweight Signaling Channel • 7

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://pragprog.com/titles/ksrtc
http://forums.pragprog.com/forums/ksrtc

Reload the page at https://localhost:3000/basic-p2p/. You should see two things: a
random, seven-digit hash appended to the URL, something like https://local-
host:3000/basic-p2p/#4134610, and that same hash repeated in the text of the page’s
first-level heading, like this:

Those adjustments are basically cosmetic, changing only the appearance of
the URL and page. Now let’s use the namespace variable to connect to the sig-
naling channel.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ksrtc
http://forums.pragprog.com/forums/ksrtc

