The
Pr. atic
ogramimers

-\

Ash Frargéwork

Create Declarative
Elixir Web Apps

7L

A\

Rebecca Le and Zach Daniel

Series editor: Sophie DeBenedetto
Development editor: Kelly Lee

This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Oh, CRUD! — Defining Basic Actions

An action describes an operation that can be performed for a given resource;
it is the verb to a resource’s noun. Actions can be loosely broken down into
four types:

¢ Creating new persisted records (rows in the database table);
¢ Reading one or more existing records;

e Updating an existing record; and

¢ Destroying (deleting) an existing record.

These four types of actions are very common in web applications, and are
often shortened to the acronym CRUD.

Ash also supports generic actions for any action that doesn't fit
into any of those four categories. We won’t be covering those in
this book, but you can read the online documentation'® about
them.

With a bit of creativity, we can use these four basic action types to describe
almost any kind of action we might want to perform in an app.

Registering for an account? That'’s a type of create action on a User resource.

Searching for products to purchase? That sounds like a read action on a Product
resource.

Publishing a blog post? It could be a create action if the user is writing the
post from scratch, or an update action if they’re publishing an existing saved
draft.

In Tunez, we’ll have functionality for users to list artists and view details of
a specific artist (both read actions), create and update artist records (via forms),
and also destroy artist records; so we’ll want to use all four types of actions.
This is a great time to learn how to define and run actions using Ash, with
some practical examples.

In our Artist resource, we can add an empty block for actions, and then start
filling it out with what we want to be able to do:

01/lib/tunez/music/artist.ex
defmodule Tunez.Music.Artist do
...

actions do

15. https://hexdocs.pm/ash/generic-actions.html

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ldash/code/01/lib/tunez/music/artist.ex
https://hexdocs.pm/ash/generic-actions.html
http://pragprog.com/titles/ldash
http://forums.pragprog.com/forums/ldash

2

end
end

Let’s start with creating records with a create action, so we have some data to
use when testing out other types of actions.

Defining a create action

Actions are defined by adding them to the actions block in a resource. At their
most basic, they require a type (one of the four mentioned earlier — create,
read, update and destroy), and a name. The name can be any atom you like, but
should describe what the action is actually supposed to do. It's common to
give the action the same name as the action type, until you know you need
something different.

01/lib/tunez/music/artist.ex
actions do
create :create do
end
end

To create an Artist record, we need to provide the data to be stored — in this
case, the name and biography attributes, in a map. (The other attributes, such
as timestamps, will be automatically managed by Ash.) We call these the
attributes that the action accepts, and can list them in the action with the

accept macro.
01/lib/tunez/music/artist.ex
actions do
create :create do
accept [:name, :biography]
end
end

And that’s actually all we need to do to create the most basic create action.
Ash knows that the core of what a create action should do is create a data
layer record from provided data, so that’s exactly what it will do when we run
it.

Running actions

There are two basic ways we can run actions: the generic query/changeset
method, and the more direct code interface method. We can test them both
out in an iex session:

$ iex -S mix

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ldash/code/01/lib/tunez/music/artist.ex
http://media.pragprog.com/titles/ldash/code/01/lib/tunez/music/artist.ex
http://pragprog.com/titles/ldash
http://forums.pragprog.com/forums/ldash

Oh, CRUD! — Defining Basic Actions ® 3

Creating records via a changeset

If you've used Ecto before, this pattern may be familiar to you:

e Create a changeset (a set of data changes to apply to the resource)
* Pass that changeset to Ash for processing

In code, this might look like the following:

Tunez.Music.Artist
|> Ash.Changeset.for create(:create, %{

name: "Valkyrie's Fury",

biography: "A power metal band hailing from Tallinn, Estonia"
1)

|> Ash.create()

We specify the action that the changeset should be created for, with the data
that we want to save. When we pipe that changeset into Ash, it will handle
running all of the validations and creating the record in the database.

iex(1)> Tunez.Music.Artist |>
.(1)> Ash.Changeset.for create(:create, %{
.(1)> name: "Valkyrie's Fury",
..(1)> biography: "A power metal band hailing from Tallinn, Estonia"
(1> 1) |

...(1)> Ash.create()
{:0k,

#Tunez.Music.Artist<
_ meta_ : #Ecto.Schema.Metadata<:loaded, "artists"s>,
id: [uuid],
name: "Valkyrie's Fury",
biography: "A power metal band hailing from Tallinn, Estonia",

>}...

The record is inserted into the database, and then returned as part of an :ok
tuple. You can verify this in your database client of choice, for example, using
psql tunez_dev in your terminal to connect using the inbuilt command-line client:

tunez_dev=# select * from artists;

[RECORD 1 J---mmmmmmmm e m e e e e

id | [uuid]

name | Valkyrie's Fury

biography | A power metal band hailing from Tallinn, Estonia

inserted at | [now]
updated at | [now]

What happens if we submit invalid data, such as an Artist without a name?

iex(2)> Tunez.Music.Artist |>
...(2)> Ash.Changeset.for create(:create, %{name: ""}) |>
...(2)> Ash.create()

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ldash
http://forums.pragprog.com/forums/ldash

o4

{:error,
%Ash.Error.Invalid{
changeset: #Ash.Changeset<...>,
errors: [
%Ash.Error.Changes.Required{
field: :name,
type: :attribute,
resource: Tunez.Music.Artist,

The record isn’t inserted into the database, and we get an error record back
telling us what the issue is: the name is required. Later on in this chapter,
we’ll see how these returned errors are used when we integrate the actions
into our web interface.

Like a lot of other Elixir libraries, most Ash functions return data in :ok and
:error tuples. This is handy because it lets you easily pattern match on the
result, to handle the different scenarios. To raise an error instead of returning
an error tuple, you can use the bang version of a function ending in an
exclamation mark, ie. Ash.create! instead of Ash.create.

Creating records via a code interface

If you're familiar with Ruby on Rails or ActiveRecord, this pattern may be
more familiar to you. It allows us to skip the step of manually creating a
changeset, and lets us call the action directly as a function.

Code interfaces can be defined on either a domain module or on a resource
directly. We’'d generally recommend defining them on domains, similar to
Phoenix contexts, because it lets the domain act as a solid boundary with the
rest of your application. With all your resources listed in your domain, it also
gives a great overview of all your functionality in one place.

To enable this, we can use Ash’s define macro when including the Artist
resource in our Tunez.Music domain:

01/lib/tunez/music.ex
resources do
resource Tunez.Music.Artist do
define :create artist, action: :create
end
end

This will connect our domain function create_artists, to the create action of the
resource. Once you've done this, if you recompile within iex the new function
will now be available, complete with auto-generated documentation:

iex(2)> h Tunez.Music.create artist

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ldash/code/01/lib/tunez/music.ex
http://pragprog.com/titles/ldash
http://forums.pragprog.com/forums/ldash

Oh, CRUD! — Defining Basic Actions ¢ 5

def create_artist(params_or opts \\ %{}, opts \\ [])

Calls the create action on Tunez.Music.Artist.

You can call it like any other function, with the data to be inserted into the
database:

iex(7)> Tunez.Music.create artist(%{

...(7)> name: "Valkyrie's Fury",

...(7)> biography: "A power metal band hailing from Tallinn, Estonia"
.. (7)> })

{:0k, #Tunez.Music.Artist<...>}

Under the hood, the code interface is creating a changeset and passing it to the
domain, but that repetitive logic is hidden away. So there’s no real functional benefit,
but the code interface is easier to use and more readable.

Where the changeset method shines is around forms on the page — we’ll see shortly
how AshPhoenix provides a thin layer over the top of changesets to allow all of
Phoenix’s existing form helpers to work seamlessly with Ash changesets instead of
Ecto changesets.

We've provided some sample content for you to play around with — you can
import it into your database by running the following on the command line:

$ mix run priv/repo/seeds/0l-artists.exs

There are other seed files in there too, but we’ll mention those when we get
to them!

Now that we have some data in our database, we can look at other types of
actions.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ldash
http://forums.pragprog.com/forums/ldash

