
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com


Using aggregates like any other attribute
It would be amazing if the artist catalog looked like a beautiful display, of
album artwork and artist information.

In Tunez.Artists.IndexLive, the cover image display is handled by a call to the cov-
er_image function component within artist_card:

03/lib/tunez_web/live/artists/index_live.ex
<div id={"artist-#{@artist.id}"} data-role="artist-card" class="relative mb-2">

<.link navigate={~p"/artists/#{@artist}"}>
<.cover_image />

</.link>
</div>

Because we can use and reference aggregate attributes like any other
attributes on a resource, we can add an image argument to the cover_image
function component, to replace the default placeholder image with our cov-
er_image_url calculation:

03/lib/tunez_web/live/artists/index_live.ex
<div id={"artist-#{@artist.id}"} data-role="artist-card" class="relative mb-2">

<.link navigate={~p"/artists/#{@artist}"}>
<.cover_image image={@artist.cover_image_url} />➤

</.link>
</div>

Refreshing the artist catalog after making the change might not be what you
expect — why aren’t the covers displaying? Because we aren’t loading them!
Remember that we need to specifically load calculations/aggregates if we
want to use them, they won’t be generated automatically.

• Click  HERE  to purchase this book now.  discuss

http://media.pragprog.com/titles/ldash/code/03/lib/tunez_web/live/artists/index_live.ex
http://media.pragprog.com/titles/ldash/code/03/lib/tunez_web/live/artists/index_live.ex
http://pragprog.com/titles/ldash
http://forums.pragprog.com/forums/ldash


Because we’ll want all of our new aggregates loaded every time we run the
search action on the Artist resource, and it’s not a dynamic list in any way, we
can add a preparation18 to that action to load our data.

03/lib/tunez/music/artist.ex
read :search do

# ...

prepare build(load: [:album_count, :latest_album_year_released,
:cover_image_url])

end

Reloading the artist catalog will now populate the data for all of the aggregates
we listed, and look at the awesome artwork appear! Special thanks to Midjour-
ney, for bringing our imagination to life!

For the album count and latest album year released fields, we can add those
details to the end of the artist_card function, using the previously-unused
artist_card_album_info component defined right below it:

03/lib/tunez_web/live/artists/index_live.ex
def artist_card(assigns) do

~H"""
# ...
<.artist_card_album_info artist={@artist} />
"""

end

And behold! The artist catalog is now in its full glory!

Earlier in the chapter, we looked at sorting artists in the catalog, via three
different attributes - name, inserted_at and updated_at. We’ve explicitly said a few
times now, that calculations and aggregates can be treated like any other
attribute — does that mean we might be able to sort on them too???

You bet you can!

Sorting based on aggregate data
Around this point is where Ash really starts to shine, and you might start
feeling a bit of a tingle with the power at your fingertips. Hold that thought,
because it’s going to get even better. Let’s add some new sort options for our
aggregate attributes, to our list of available sort options in Tunez.Music.IndexLive:

03/lib/tunez_web/live/artists/index_live.ex
def sort_options do

[

18. https://hexdocs.pm/ash/Ash.Resource.Preparation.Builtins.html#build/1

• 4

• Click  HERE  to purchase this book now.  discuss

http://media.pragprog.com/titles/ldash/code/03/lib/tunez/music/artist.ex
http://media.pragprog.com/titles/ldash/code/03/lib/tunez_web/live/artists/index_live.ex
http://media.pragprog.com/titles/ldash/code/03/lib/tunez_web/live/artists/index_live.ex
https://hexdocs.pm/ash/Ash.Resource.Preparation.Builtins.html#build/1
http://pragprog.com/titles/ldash
http://forums.pragprog.com/forums/ldash


{"-updated_at", "recently updated"},
{"-inserted_at", "recently added"},
{"name", "name"},
{"-album_count", "number of albums"},➤

{"--latest_album_year_released", "latest album release"}➤

]
end

We want artists with the most albums and with the most recent albums listed
first, so we’ll sort them descending by prefixing the attribute name with a -.
Using -- is a bit special - it’ll put any nil values (if an artist hasn’t released
any albums!) at the end of the list.

To allow the aggregates to be sorted on, we do need to mark them as public?
true, like we did with our initial set of sortable attributes in Using sort_input
for succinct yet expressive sorting, on page ?:

03/lib/tunez/music/artist.ex
aggregates do

count :album_count, :albums do
public? true➤

end

first :latest_album_year_released, :albums, :year_released do
public? true➤

end

# ...
end

And then we’ll be able to sort in our artist catalog, to see which artists have
the most albums, or have released albums most recently:

• Click  HERE  to purchase this book now.  discuss

• 5

http://media.pragprog.com/titles/ldash/code/03/lib/tunez/music/artist.ex
http://pragprog.com/titles/ldash
http://forums.pragprog.com/forums/ldash


This is all amazing! We’ve built some really excellent functionality over the
course of this chapter, to let users search, sort, and paginate through data.

And in the next one, we’ll see how we can use the power of Ash to build some
neat APIs for Tunez, using our existing resources and actions. Reduce, re-
use and recycle code!

• 6

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/ldash
http://forums.pragprog.com/forums/ldash

