
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Removing Forbidden Actions from the UI
At the moment, the Artist resource in Tunez is secure — actions that modify
data can only be called if a) we pass in a user record as the actor and b) that
actor is authorized to run that action. So far, so good.

The web UI doesn’t reflect these changes, though. Even when not logged in
to the app, we can still see buttons and forms inviting us to create, edit, or
delete data.

We can’t actually run the actions, so clicking the buttons and submitting the
forms will return an error, but it’s not a good user experience to see them at
all. And if we are logged in, so we should have access to manage data, we still
get an error! Oops.

There are a few things we need to do, to make the UI behave correctly for any
kind of user viewing it:

• Update all of our direct action calls to pass the current user as the actor
• Update our forms to ensure we only let the current user see them if they

can submit them
• And lastly, update our templates to only show buttons if the current user

is able to use them.

It sounds like a lot, but it’s only a few changes to make, spread across a few
different files. Let’s dig in!

Identifying the actor when calling actions
For a more complex app, this would be the biggest change from a functional-
ity perspective — allowing actions to be called by users who are authorized

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ldash
http://forums.pragprog.com/forums/ldash

to do things. Tunez is a lot simpler, and most of the data management is done
via forms, so this isn’t a massive change for us. The only actions we call
directly are read and destroy actions:

Tunez.Music.search_artists/2, in Tunez.Artists.IndexLive. We don’t strictly need to pass
the actor in here, as our current policies will allow the action for everyone
even if they’re not authenticated, but that could change in the future. If it
does, we don’t want to forget to set the actor, so we may as well do it now!

06/lib/tunez_web/live/artists/index_live.ex
def handle_params(params, _url, socket) do

...

page =
Tunez.Music.search_artists!(query_text,
page: page_params,
query: [sort_input: sort_by],
actor: socket.assigns.current_user➤

)

Tunez.Music.get_artist_by_id/2, in Tunez.Artists.ShowLive. Again, we don’t strictly need
it because everyone can read artist information, but like the search_artists action,
we can’t guarantee that this will always be the case in the future. It does no
harm to set the actor either, so we’ll add it.

06/lib/tunez_web/live/artists/show_live.ex
def handle_params(%{"id" => artist_id}, _session, socket) do

artist =
Tunez.Music.get_artist_by_id!(artist_id,
load: [:albums],
actor: socket.assigns.current_user➤

)

Tunez.Music.destroy_artist/2, in Tunez.Artists.ShowLive. This one we do need to pass the
actor in to make it work, as only specific types of users can delete artists.

06/lib/tunez_web/live/artists/show_live.ex
def handle_event("destroy_artist", _params, socket) do

case Tunez.Music.destroy_artist(
socket.assigns.artist,
actor: socket.assigns.current_user➤

) do
...

Tunez.Music.destroy_album/2, in Tunez.Artists.ShowLive. We haven’t added policies for
albums yet, but it does no harm to start tweaking our templates to support
them now.

06/lib/tunez_web/live/artists/show_live.ex
def handle_event("destroy_album", %{"id" => album_id}, socket) do

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ldash/code/06/lib/tunez_web/live/artists/index_live.ex
http://media.pragprog.com/titles/ldash/code/06/lib/tunez_web/live/artists/show_live.ex
http://media.pragprog.com/titles/ldash/code/06/lib/tunez_web/live/artists/show_live.ex
http://media.pragprog.com/titles/ldash/code/06/lib/tunez_web/live/artists/show_live.ex
http://pragprog.com/titles/ldash
http://forums.pragprog.com/forums/ldash

case Tunez.Music.destroy_album(
album_id,
actor: socket.assigns.current_user➤

) do
...

Not too onerous! Moving forward, we’ll add the actor to every action we call,
to avoid this kind of rework.

Updating forms to identify the actor
This is the biggest change for Tunez, as we create and edit both artists and
albums via forms. There are two parts to this: setting the actor when building
the forms, and ensuring that the form is submittable.

We don’t want to show the form at all if the user wouldn’t be able to submit
it, so we need to run the submittable check before rendering, in the mount/3
functions of Tunez.Artists.FormLive:

06/lib/tunez_web/live/artists/form_live.ex
def mount(%{"id" => artist_id}, _session, socket) do

artist = Tunez.Music.get_artist_by_id!(artist_id)

form =
Tunez.Music.form_to_update_artist(
artist,
actor: socket.assigns.current_user➤

)
|> AshPhoenix.Form.ensure_can_submit!()➤

...

def mount(_params, _session, socket) do
form =

Tunez.Music.form_to_create_artist(
actor: socket.assigns.current_user➤

)
|> AshPhoenix.Form.ensure_can_submit!()➤

AshPhoenix.Form.ensure_can_submit!/116 is a neat little helper function that authorizes
the configured action and data in the form using our defined policies, to make
sure it is submittable. If the authorization fails, then the form can’t be sub-
mitted, and an exception will be raised.

We can make the same changes to the mount/3 functions in Tunez.Albums.FormLive:

06/lib/tunez_web/live/albums/form_live.ex
def mount(%{"id" => album_id}, _session, socket) do

album = Tunez.Music.get_album_by_id!(album_id, load: [:artist])

16. https://hexdocs.pm/ash_phoenix/AshPhoenix.Form.html#ensure_can_submit!/1

• Click HERE to purchase this book now. discuss

Removing Forbidden Actions from the UI • 5

http://media.pragprog.com/titles/ldash/code/06/lib/tunez_web/live/artists/form_live.ex
http://media.pragprog.com/titles/ldash/code/06/lib/tunez_web/live/albums/form_live.ex
https://hexdocs.pm/ash_phoenix/AshPhoenix.Form.html#ensure_can_submit!/1
http://pragprog.com/titles/ldash
http://forums.pragprog.com/forums/ldash

form =
Tunez.Music.form_to_update_album(
album,
actor: socket.assigns.current_user➤

)
|> AshPhoenix.Form.ensure_can_submit!()➤

...

def mount(%{"artist_id" => artist_id}, _session, socket) do
artist = Tunez.Music.get_artist_by_id!(artist_id)

form =
Tunez.Music.form_to_create_album(
transform_params: fn _form, params, _context ->

Map.put(params, "artist_id", artist.id)
end,
actor: socket.assigns.current_user➤

)
|> AshPhoenix.Form.ensure_can_submit!()➤

Now if you click any of the buttons that link to pages focussed on forms, when
not logged in as a user with the correct role, an exception will be raised and
you’ll get a standard Phoenix error page:

That works well for forms — but what about entire pages? Maybe we’ve built
an admin-only area, or we’ve added an Artist version history page that only
editors can see. We can’t use the same form helpers to ensure access, but we
can prevent users from accessing what they shouldn’t.

Blocking pages from unauthorized access
When we installed AshAuthenticationPhoenix, one file that the installer cre-
ated was the TunezWeb.LiveUserAuth module, in lib/tunez_web/live_user_auth.ex. We
haven’t looked at that file yet, but we will now!

It contains several on_mount function definitions, that do different things based
on the authenticated user (or lack of) — the live_user_optional function head will
make sure there’s always a current_user set in the socket assigns, even if it’s
nil; the live_user_required function head will redirect away if there’s no user logged

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ldash
http://forums.pragprog.com/forums/ldash

in, and the live_no_user function head will redirect away if there is a user logged
in!

These are LiveView-specific helper functions,17 that can be called at the root
level of any liveview like so:

defmodule Tunez.Accounts.ForAuthenticatedUsersOnly do
use TunezWeb, :live_view

or :live_user_optional, or :live_no_user
on_mount {TunezWeb.LiveUserAuth, :live_user_required}

...

So to block a liveview from unauthenticated users, we could drop that on_mount
call with :live_user_required in that module, and the job would be done!

We can add more function heads to the TunezWeb.LiveUserAuth module as well
for custom behaviour, such as role-based function heads.

06/lib/tunez_web/live_user_auth.ex
defmodule TunezWeb.LiveUserAuth do

...

def on_mount([role_required: role_required], _, _, socket) do
current_user = socket.assigns[:current_user]

if current_user && current_user.role == role_required do
{:cont, socket}

else
socket =

socket
|> Phoenix.LiveView.put_flash(:error, "Unauthorized!")
|> Phoenix.LiveView.redirect(to: ~p"/")

{:halt, socket}
end

end
end

This would allow us to write on_mount calls in a liveview like:

defmodule Tunez.Accounts.ForAdminsOnly do
use TunezWeb, :live_view

on_mount {TunezWeb.LiveUserAuth, role_required: :admin}

...

Now we can secure all of our pages really neatly, both those that are form-
based, and those that aren’t. We still shouldn’t see any shiny tempting buttons

17. https://hexdocs.pm/phoenix_live_view/Phoenix.LiveView.html#on_mount/1

• Click HERE to purchase this book now. discuss

Removing Forbidden Actions from the UI • 7

http://media.pragprog.com/titles/ldash/code/06/lib/tunez_web/live_user_auth.ex
https://hexdocs.pm/phoenix_live_view/Phoenix.LiveView.html#on_mount/1
http://pragprog.com/titles/ldash
http://forums.pragprog.com/forums/ldash

for things we can’t access, though, so let’s hide them if the user can’t perform
the actions.

Hiding calls to action that the actor can’t perform
There are buttons sprinkled throughout our liveviews and components —
buttons for creating, editing, and deleting artists; and for creating, updating
and deleting albums. We can use Ash’s built-in helpers to add general
authorization checks to each of them, meaning we don’t have to duplicate
any policy logic and we won’t need to update any templates if our policy rules
change.

Ash.can?
The first helper function we’ll look at is Ash.can?.18 This is a pretty low-level
function, that takes a tuple representing the action to call and an actor, runs
the authorization checks for the action, and returns a boolean representing
whether or not the action is authorized:

iex(1)> Ash.can?({Tunez.Music.Artist, :create}, nil)
false
iex(2)> Ash.can?({Tunez.Music.Artist, :create}, %{role: :admin})
true
iex(3) artist = Tunez.Music.get_artist_by_id!(«uuid»)
#Tunez.Music.Artist<id: «uuid», ...>
iex(4)> Ash.can?({artist, :update}, %{role: :user})
false
iex(5)> Ash.can?({artist, :update}, %{role: :editor})
true

The format of the action tuple looks a lot like how you would run the action
manually, as we covered in Running actions, on page ? — building a
changeset for a create action with Ash.Changeset.for_create(Tunez.Music.Artist, :create,
...), or for an update action with Ash.Changeset.for_update(artist, :update, ...).

Our liveviews and components don’t call actions like this though, we use code
interfaces for everything because they’re a lot cleaner. Ash also defines some
helper functions around authorization for code interfaces that are nicer to
read, so we’ll look at those next.

18. https://hexdocs.pm/ash/Ash.html#can?/3

• 8

• Click HERE to purchase this book now. discuss

https://hexdocs.pm/ash/Ash.html#can?/3
http://pragprog.com/titles/ldash
http://forums.pragprog.com/forums/ldash

