
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com


Welcome!
As software developers, we face new and interesting challenges daily. When
one of these problems appears, our instincts are to start building a mental
model of the solution. The model might contain high-level concepts, ideas, or
things that we know we want to represent, and ways they might communicate
with each other to carry out the desired task.

Your next job is to find a way to map this model onto the limitations of the
language and frameworks available to you. But there’s a mismatch: your
internal model is a fairly abstract representation of the solution, but the
tooling you use demands very specific constructs, often dictated by things
such as database schemas and APIs.

These problems are hard, but they’re not intractible — they can be solved,
using a framework like Ash.

Ash lets you think and code at a higher level of abstraction, and your resulting
code will be cleaner, easier to manage, and you’ll be less frustrated.

This book will show you the power of Ash, and how to get the most out of it
in your Elixir projects.

What is Ash?
Ash is a set of tools you can use to describe and build the domain model of
your applications — the “things” that make up what your app is supposed to
do, and the business logic of how they relate and interact with each other. If
you’re building an e-commerce store, your domain model will have things like
products, categories, suppliers, orders, customers, deliveries, and more; and
you’ll already have a mental model to describe how they fit together. Ash is
how you can translate that mental model into code, using standardized pat-
terns and your own terminology.

Ash is a fantastic application framework, but it is not a web framework. This
question comes up often, so we want to be really clear up front — Ash doesn’t

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/ldash
http://forums.pragprog.com/forums/ldash


replace Phoenix, Plug, or any other web framework when building web apps
in Elixir. It does, however, slide in very nicely alongside them and work with
them, and when combined they can make the ultimate toolkit for building
amazing apps.

What can Ash offer an experienced Elixir/Phoenix developer? You’re already
familiar with a great set of tools for building web applications today, and Ash
builds on that foundation that you know and love. It leverages the rock-solid
Ecto library for its database integrations, and its resource-oriented design
helps bring structure and order to the wild west of Phoenix contexts. If this
sounds interesting to you, keep reading!

And if you’re only just starting on your web development journey, we’d love
to introduce you to our battle-tested and highly-productive stack!

Why Ash?
Ash is built on three fundamental principles. These principles are rooted in
the concept of declarative design, and have arisen from direct encounters
with the good, bad and the ugly of software in the wild. They are:

• Data > Code
• Derive > Hand-write
• What > How

To paraphrase a famous manifesto, while there is value in the items on the
right, we value the items on the left more.

No principle is absolute and each has its own tradeoffs, but together they can
help us build rich, maintainable and scalable applications. The “why” of Ash
is rooted in the “why” of each of these core principles.

Data > Code
With Ash, we model (describe) our application components with resource
modules, using code that compiles into pre-defined data structures. These
resources describe the interfaces to, and behavior of, the various components
of our application.

Ash can take the data structures created by these descriptions, and use them
to do wildly useful things with little-to-no effort. Furthermore, Ash contains
tools that allow you to leverage your application-as-data to build and extend
your application in fully custom ways. You can introspect and use the data
structures in your own code, and you can even write transformers to extend
the language that Ash uses and add new behaviour to existing data.

Welcome! • iv

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/ldash
http://forums.pragprog.com/forums/ldash


Taking advantage of these super powers, however, requires learning the lan-
guage of Ash Framework, and this is what we’ll teach you in this book.

Derive > Hand-write
We emphasize deriving application components from our descriptions, instead
of hand-writing our various application layers. When building a JSON API,
for example, you might end up hand-writing controllers, serializers, OpenAPI
schemas, error handling, and the list goes on. If you want to add a GraphQL
API as well, you have to do it all over again with queries, mutations, and
resolvers. In Ash, this is all driven from your resource definitions, using them
as the single source of truth for how your application should behave. Why
should you need to restate your application logic in five different ways?

There is value in the separation of these concerns, but that value is radically
overshadowed by all of the associated costs, such as:

• The cost of bugs via functionality drift in your various components
• The cost of the conceptual overhead required to implement changes to

your application and each of its interfaces
• And the cost, especially, of every piece of your application being a special

snowflake with its own design, idiosyncrasies and patterns.

When you see what Ash can derive automatically, without all of the costly
spaghetti code necessary with other approaches, the value of this idea becomes
very clear.

What > How
This is the core principle of declarative design, and you’ve almost certainly
leveraged this principle already in your time as a developer without even
realizing it.

Two behemoths in the world of declarative design are HTML and SQL. When
writing code in either language, you don’t describe how the target is to be
achieved, only what the target is. For HTML, a renderer is in charge of turning
your HTML descriptions into pixels on a screen; and for SQL, a query planner
and engine are responsible for translating your queries into procedural code
that reads data from storage.

An Ash resource behaves in the exact same way, as a description of the what.
All of the code in Ash is geared towards looking at the descriptions of what
you want to happen, and making it so. This is a crucial thing to keep in mind
as you go through this book — when we write resources, we are only
describing their behavior. Later, when we actually call the actions we describe,

• Click  HERE  to purchase this book now.  discuss

Why Ash? • v

http://pragprog.com/titles/ldash
http://forums.pragprog.com/forums/ldash


or connect them to an API using an API extension for example, Ash looks at
the description provided to determine what is to be done.

These principles, and the insights we derive from them, might take some time
to really comprehend and come to terms with. As we go through the more
concrete concepts presented in this book, revisit these principles. Ash is more
than just a new tool, it’s a new way of thinking about how we build applica-
tions in general.

We’ve seen time and time again, especially in our in-person workshops, that
everyone has a moment when these concepts finally click. This is when Ash
stops feeling like magic, and begins to look like what it really is: the principles
of declarative design, taken to their natural conclusion.

Model your domain, derive the rest.

Is This Book For You?
If you’ve gotten this far, then yes, this book is for you!

If you have some experience with Elixir and Phoenix, have heard about this
library called Ash, and are keen to find out more, then this book is definitely
for you.

If you’re a grizzled Elixir veteran wondering what all the Ash fuss is about,
it’s also for you!

If you’ve already been working with Ash, even professionally, you’ll still learn
new things from this book (but you can read it a bit faster).

If you haven’t used Elixir before, this book is probably not for you yet — but
it might be soon! To learn about this amazing functional programming lan-
guage, we highly recommend working through Elixir in Action [Jur15]. To get
a feel for how modern web apps are built in Elixir with Phoenix and Phoenix
LiveView, Programming Phoenix LiveView [TD24] will get you up to speed. And
then you can come back here, and keep reading!

What’s In This Book
This book is divided into nine chapters, each one building on top of the previ-
ous to flesh out the domain model for a music database. We’ll provide the
starter Phoenix LiveView application to get up and running, and then away
we’ll go!

In Chapter 1, Building Our First Resource, on page ?, we’ll set up the Tunez
starter app, install and configure Ash, and get familiar with CRUD actions.

Welcome! • vi

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/titles/ldash
http://forums.pragprog.com/forums/ldash


We’ll build a full (simple) resource, complete with attributes, actions, and a
database table; and integrate those actions into the web UI using forms and
code interfaces.

In Chapter 2, Extending Resources with Business Logic, on page ?, we’ll
create a second resource, and learn about linking resources together with
relationships. We’ll also cover more advanced features of resources, like
preparations, validations, identities, and changes.

In Chapter 3, Creating a Better Search UI, on page ?, we’ll focus on features
for searching, sorting, and pagination, to make our main catalog view much
more dynamic. We’ll also start to unlock some of the true power of Ash, by
deriving new attributes with calculations and aggregates.

In Chapter 4, Generating APIs Without Writing Code, on page ?, we’ll see
the principle of “model your domain, derive the rest” in action, when we learn
how to create full REST JSON and GraphQL APIs from our existing resource
and action definitions. It’s not magic, we swear!

In Chapter 5, Authentication: Who Are You?, on page ?, we’ll set up
authentication for Tunez, using the AshAuthentication library. We’ll cover
different strategies for authentication like username/password and logging
in via magic link, as well as customizing the autogenerated liveviews to really
make them seamless.

In Chapter 6, Authorization: What Can You Do?, on page ?, we’ll introduce
authorization into the app, using policies and bypasses. We’ll see how we can
define a policy once and use it throughout the entire app, from securing our
APIs to showing and hiding UI buttons and more.

In the (as yet) unwritten Chapter 7, All About Testing, , we’ll tackle the topic
of testing — what should we test in an app built with Ash, and how should
we do it? We’ll go over some testing strategies, see what tools Ash provides
to help with testing, and cover practical examples of testing Ash and LiveView
apps.

In the (as yet) unwritten Chapter 8, Fun With Nested Forms, , we’ll dig a little
deeper into Ash’s integration with Phoenix, by expanding our domain model
and building a nested form, including drag and drop re-ordering for nested
records.

And lastly, in the (as yet) unwritten Chapter 9, PubSub and Real-Time Notifica-
tions, , we’ll use everything we’ve learned so far to build a user notification
system. Using pubsub for broadcasting real-time updates, and AshOban for
making sure batches of notifications are processed smoothly in the back-

• Click  HERE  to purchase this book now.  discuss

What’s In This Book • vii

http://pragprog.com/titles/ldash
http://forums.pragprog.com/forums/ldash


ground, we’ll create a simple yet robust system that allows for expansion as
your apps grow.

Online Resources
All online resources for this book, such as errata and code samples, can be
found on the Pragmatic Bookshelf product page:

>> http://pragprog.com/book/ldash <<

We also invite you to join the greater Ash community, if you’d like to learn
more, or contribute to the project and ecosystem: https://ash-hq.org/community

And on that note, let’s dig in! We’ve got a lot of exciting topics to cover, and
can’t wait to get started!

Welcome! • viii

• Click  HERE  to purchase this book now.  discuss

http://pragprog.com/book/ldash
https://ash-hq.org/community
http://pragprog.com/titles/ldash
http://forums.pragprog.com/forums/ldash

