Extracted from:

React for Real

Front-End Code, Untangled

This PDF file contains pages extracted from React for Real, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF
copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina

http://www.pragprog.com

Th
Pra ematic
ogrammers

React for Real

Front-End Code, Untangled

Ludovico Fischer
edited by Brian P. Hogan

React for Real

Front-End Code, Untangled

Ludovico Fischer

The Pragmatic Bookshelf

Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow
Development Editor: Brian P. Hogan
Copy Editor: Nicole Abramowtiz
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-68050-263-3

Encoded using the finest acid-free high-entropy binary digits.

Book version: P1.0—August 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

vy

Design Presentational Components

Once we've decided on the general layout of the application, we can start working
on the individual presentational components that make up the interface.

Styling with CSS is an important part of defining the appearance and func-
tionality of a UL CSS techniques such as BEM® strive to organize CSS classes
into components, so that adding a component class to an element endows it
with a bunch of properties. React makes these techniques less useful. With
React, your whole interface is made up of React components. React compo-
nents are much smaller than traditional templates, so each component
encapsulates a potentially reusable part of the interface. By reusing React
components, you automatically reuse the styles you define for each component,
so CSS components are less useful. We'll use a CSS library called Tachyons,’
which organizes individual CSS properties along regular increments to create
a consistent appearance.

Let’s create a new directory for the word counter project. As before, we’ll use
a file named index.html in the top directory to provide the HTML skeleton. Create
index.html and add the CDN link to Tachyons in index.html:

wordcounter-single/index.html
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<link rel="stylesheet"
href="https://unpkg.com/tachyons@4.8.0/css/tachyons.min.css"/>
</head>
<body>
<div id="app"></div>
</body>
</html>

From this point on, we’ll store all our JavaScript sources in a directory named
src. That way, we’ll distinguish them more easily when we add additional
configuration files to our project in the next chapters.

Create a new directory named src. Create a new file named index.js in the src
directory and link it in index.html. Ensure there’s a <div> with an id=app.

wordcounter-single/index.html
<body>

4. http://getbem.com

5. http://tachyons.io

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/lfreact/code/wordcounter-single/index.html
http://media.pragprog.com/titles/lfreact/code/wordcounter-single/index.html
http://getbem.com
http://tachyons.io
http://pragprog.com/titles/lfreact
http://forums.pragprog.com/forums/lfreact

YYYVYYY

2

<div id="app"></div>
<script src="https://unpkg.com/react@l5/dist/react.js"></script>
<script src="https://unpkg.com/react-dom@l5/dist/react-dom.js"></script>

<script
src="https://unpkg.com/babel-standalone@6/babel.min. js"
></script>
<script type="text/babel" src="src/index.js"></script>
</body>

In index.js, define a function Counter() that outputs the value of its count prop in
a <p> element:

wordcounter-single/src/index.js
function Counter({ count }) {
return (
<p className="mb2">
Word count: {count}
</p>
):
}

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/lfreact/code/wordcounter-single/src/index.js
http://pragprog.com/titles/lfreact
http://forums.pragprog.com/forums/lfreact

Design Presentational Components ® 3

Counter() expects an object with a count key. With destructuring, assign the
value of the count parameter property to count in the Counter() body. Return a
JSX expression with the count variable between braces to output a React ele-
ment displaying its value. React uses className instead of class for legacy reasons
and to avoid clashes with the JavaScript class keyword.

In addition to class and className, another difference between JSX and HTML is that
you must use htmlFor instead of for to point a label to the element it labels. Probably
the most important point to keep in mind when writing JSX is that React interprets
elements that start with a capital letter as based on custom components, and elements
that start with lowercase as plain HTML elements.

Next, create the progress bar component. In index.js, create a ProgressBar()
function that takes a completion prop, and returns a progress bar with its value=
attribute set to the completion prop:

wordcounter-single/src/index.js
function ProgressBar({ completion }) {
const percentage = completion * 100;
return (
<div className="mv2 flex flex-column">
<label htmlFor="progress" className="mv2">
Progress
</label>
<progress value={completion} id="progress" className="bn">
{percentage}%
</progress>
</div>
)i
}

<progress> is a standard HTML element. The value= attribute determines how
much it fills. 0.5 means 50%, 0.6 means 60%, and so on, so completion should
contain a number between O and 1. To make the progress bar accessible, we
include a label for the <progress> element.

Next, let’s create the text editor itself. In index.js, create an Editor component
that defines a plain <textarea>. Editor takes the text as prop:

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/lfreact/code/wordcounter-single/src/index.js
http://pragprog.com/titles/lfreact
http://forums.pragprog.com/forums/lfreact

o4

wordcounter-single/src/index.js
function Editor({
text,
DA
return (
<div className="flex flex-column mv2">
<label htmlFor="editor" className="mv2">
Enter your text:
</label>
<textarea
value={text}
id="editor"
/>
</div>
)
}

In HTML, the <textarea> child element determines the <textarea> content, but the
<textarea> React element uses the value prop. Set the value prop of the <textarea>
element to the value of the text prop.

You have almost all the ingredients in place. Now we’ll combine Editor, ProgressBar,
and Counter into a new component called WordCounter.

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/lfreact/code/wordcounter-single/src/index.js
http://pragprog.com/titles/lfreact
http://forums.pragprog.com/forums/lfreact

