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CHAPTER 2

Work with State and Events

Web applications are about dynamic data: you have to update the information
you display in response to user actions and HTTP responses. In this chapter,
you’ll learn how to model data that changes over time, and you’ll learn how
to respond to user events and HTTP responses. You'll discover how to transform
the word counter into a fully reactive interface.

Get to Know State

We'd like to allow users to edit the word counter text. For this, we need some
way to handle values that change over time: a classic book asserts that an
object has state if its behavior is influenced by its history (Structure and
Interpretation of Computer Programs [AS96).

Let’s take a little detour to understand state. Open your browser’s JavaScript
console and type the add() function, which just adds its arguments together
and returns the result:

uptospeed/src/functions.js
function add(x, y) {
return x + vy;

}
Then call the add() method a few times:

add(1,2); // returns 3

add(5, 7); // returns 12
add(1l, 2); // returns 3 again
add(5, 7); // returns 12 again

The return value of add() depends only on its arguments, because it is a pure
function.
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Now type the addS() function, which multiplies the second argument by n before
adding it to the first argument, and increments n each time you call it.

uptospeed/src/functions.js
let n = 1;

function addS(x, y) {
const result = x + n * y;
n++;
return result;

}

The return value changes each time you call addS, even if the arguments stay
the same, because the return value depends on how many times you've called
addS. addS has a history: it stores state in the n variable.

The potential for bugs grows as the program grows. State complicates appli-
cations, as the same function, with the same arguments, can return different
results based on when you call it.

We never tried to update a component’s props inside the component itself,
for a good reason: inside a React component, props are immutable (in practice,
you can assign a new value to a prop inside a component, but it won’t have
any effect). To handle state, you need an additional mechanism. One good
option is learning the tools that React itself provides. They get the job done
in the majority of situations with little boilerplate.
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