
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

CHAPTER 7

Live Components
In the previous chapter, we began building an interactive survey feature by
creating the backend core and boundary functionality, along with a live view
and function component to make up the beginnings of our UI. In this chapter,
we’ll build live components to manage demographics and ratings. Our live
component will manage its own state in its own lifecycle. We’ll compose an
interactive survey with it layer by layer.

Along the way, you’ll learn how live components work. You’ve seen this concept
briefly within the forms we generated. The function components you built in
the previous chapter render static markup such as HTML. Those components
don’t have their own state and users can’t modify the state through events.
Live components are different. They have their own state, can process their
own events, and even have their own lifecycle. You’ll use them to build fully
interactive parts of a page, like counters, timers, data-backed forms, and the
like. Our live components will be tiny forms that permit our users to rate
products.

You’ll explore for yourself how these communicate with their parent live view,
you’ll continue to see how components allow you to build clean and organized
code that adheres to the single responsibility principle, and you’ll implement
component composition logic that allows you to manage even complex state
for your single page applications.

Build the Live Demographic Form Component
Let’s put together a plan before we get started. We’ll begin by implementing
a live component module to house our demographic form. We’ll use the
available LiveView and LiveComponent lifecycle callbacks to establish the
state of our form component. Then, we’ll render the form markup using the
same simple_form/1 function component you saw in earlier chapters. Finally,

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

we’ll teach our form component to respond to user input and save demographic
data for the user.

Define the Live Component
First up, create a new file lib/pento_web/live/demographic_live/form.ex and define the
form component module like this:

defmodule PentoWeb.DemographicLive.Form do
use PentoWeb, :live_component
alias Pento.Survey
alias Pento.Survey.Demographic

end

This is simple enough to begin with. We implement a module that uses the
:live_component behavior in order to create a live component. Then, we add a
few aliases that we’ll take advantage of in a bit.

We’ll use LiveView’s simple_form/1 function to construct the demographic form.
This function requires a form wrapping a changeset, so we’ll need to store
one in our component’s state. Like full live views, live components first have
one workflow to establish the initial page and then a change management
workflow to modify and render the component state. As we did in our live
views, we’ll use CRC to think about how to organize our code. For the initial
mount/render workflow, we don’t really need a reducer. The flow looks like
this:

inputs |> construct() |> convert()

In this diagram, the construct() refers to a function that establishes the initial
state in the form of a socket, and convert() refers to a function that transforms
all of that socket data to HTML. In the constructor, the component lifecycle
comes into play. For our component, the update callback will act as our con-
structor, and the render callback will act as our converter. Why the update
function and not the mount function? To answer that question, we need to
understand the live component lifecycle.

When we render a live component, LiveView starts the component in the
parent view’s process, and calls these callbacks, in order:

mount/1
The single argument is the socket, and we use this callback to set initial
state. This callback is invoked only once, when the component is first
rendered from the parent live view. You’ll use this function to do one-time
setup.

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

update/2
The two arguments are the assigns argument given to live_component/3 and
the socket. By default, it merges the assigns argument into the socket.assigns
established in mount/1. You’ll use this callback to add additional content
to the socket each time live_component/3 is called.

render/1
The one argument is socket.assigns. It works like a render in any other live
view.

Live components will always follow this three-step process when they are first
mounted and rendered. Then, when the component updates in response to
changes in the parent live view, only the update/2 and render/1 callbacks fire.
Since these updates skip the mount/1 callback, the update/2 function is the safest
place to establish the component’s initial state.

We’ll use the update/2 callback as our constructor to add a Demographic
changeset to socket.assigns so we can render it in a form on the template. For
a converter, we’ll let the implicit render/1 function render a HEEx template that
matches the name of our live component.

Let’s get ready to set the initial state of our live component now. Our demo-
graphic belongs to a user and we’ll need access to that user to construct a
demographic changeset. Recall that we’re planning to render our form live
component from the SurveyLive template defined in lib/pento_web/live/sur-
vey_live.html.heex like this:

<%= if @demographic do %>
<DemographicLive.Show.details demographic={@demographic} />

<% else %>
<h2>Demographic Form coming soon!</h2>

<% end %>

The SurveyLive socket assigns already contains a @current_user assignment, so
we’ll make sure to pass it into our live component. The Demographi-
cLive.Form.update/2 function can then safely rely on a current user.

With that assumption in mind, we can implement an update/2 function to build
a Demographic struct and a form struct, like this:

stateful_components/pento/lib/pento_web/live/demographic_live/form.ex
def update(assigns, socket) do

{
:ok,
socket
|> assign(assigns)
|> assign_demographic()

• Click HERE to purchase this book now. discuss

Build the Live Demographic Form Component • 5

http://media.pragprog.com/titles/liveview/code/stateful_components/pento/lib/pento_web/live/demographic_live/form.ex
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

|> clear_form()
}

end

This code uses the same technique we used in our SurveyLive.mount/3 function.
We build a couple of single-purpose reducers to add the demographic and
empty form to our socket.assigns and string them into a nice pipeline. By this
point, the reducer functions should look familiar. Here’s the first one,
assign_demographic/1:

stateful_components/pento/lib/pento_web/live/demographic_live/form.ex
defp assign_demographic(

%{assigns: %{current_user: current_user}} = socket) do
assign(socket, :demographic, %Demographic{user_id: current_user.id})

end

It simply adds an empty demographic struct.

And here are two functions to add forms to our socket, one for an empty, or
“clear”, form and one for a form with a validated changeset:

stateful_components/pento/lib/pento_web/live/demographic_live/form.ex
defp assign_form(socket, changeset) do

assign(socket, :form, to_form(changeset))
end

defp clear_form(%{assigns: %{demographic: demographic}} = socket) do
assign_form(socket, Survey.change_demographic(demographic))

end

For the assign_form/2 function, we convert an existing changeset to a form. For
the clear_form/1 function, we take the empty demographic from the socket, wrap
that in a changeset, and then add that to the socket with assign_form/2. Once the
update/2 function finishes, the component renders the template. Let’s define
that template now to render the demographic form for our shiny new
changeset.

Render The Demographic Form
You’ve seen what a LiveView form looks like. We won’t bore you with the
details. For now, add this to lib/pento_web/live/demographic_live/form.html.heex:

<div>
<.simple_form
for={@form}
phx-change="validate"
phx-submit="save"
id={@id}>

<.input

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/liveview/code/stateful_components/pento/lib/pento_web/live/demographic_live/form.ex
http://media.pragprog.com/titles/liveview/code/stateful_components/pento/lib/pento_web/live/demographic_live/form.ex
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

field={@form[:gender]}
type="select"
label="Gender"
options={["female", "male", "other", "prefer not to say"]} />

<.input
field={@form[:year_of_birth]}
type="select"
label="Year of Birth"
options={Enum.reverse(1920..2023)} />

<:actions>
<.button phx-disable-with="Saving...">Save</.button>

</:actions>
</.simple_form>

</div>

Notice that our form is contained within a root <div> element. All live compo-
nents require a single root element in their HTML templates. Also notice that
we’re also using the <.simple_form> component defined in the CoreComponents
module. Let’s dig briefly into our form rendering code.

Our update/2 function added the form struct to our socket assigns, and we
access it with @form in our call to simple_form/1. The simple_form/1 function takes
in the form struct, has an id, and applies the phx-submit LiveView binding for
saving the form. Our form has labels, fields, and error tags for each field we
want the user to populate. Finally, there’s a submit tag with a phx-disable_with
function—a little nicety that LiveView provides to handle multiple submits.

We’re ready to put it all together by rendering the form component from the
SurveyLive template in pento/lib/pento_web/live/survey_live.html.heex, like this:

Render the component from the template using the live_component/11 function
component, like this:

<%= if @demographic do %>
<DemographicLive.Show.details demographic={@demographic} />

<% else %>
<.live_component module={DemographicLive.Form}

id="demographic-form"
current_user={@current_user} />

<% end %>

The live_component/1 function is a function component made available to us by
the LiveView framework. It takes in an argument of some assigns and returns
a HEEx template that renders the given component within the parent live
view. When using live_component/1 to render a live component, you must specify

1. https://hexdocs.pm/phoenix_live_view/Phoenix.LiveView.Helpers.html#live_component/1

• Click HERE to purchase this book now. discuss

Build the Live Demographic Form Component • 7

https://hexdocs.pm/phoenix_live_view/Phoenix.LiveView.Helpers.html#live_component/1
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

an assigns of module, pointing to the name of the live component module to
mount and render, and an assigns of id, which LiveView will use to keep track
of the component. Also note the {} interpolation syntax we’re using—remember
that this syntax is required when interpolating within HTML or HEEx tags.

Now log in as a user that does not have an associated demographic record,
or simply temporarily tweak the if statement to render if !@demographic. Then,
visit /survey to see our survey page with the demographic form, as shown here.

If you try to submit the form, you’ll find the live view crashes, but maybe not
for the reason you thought. Look at the logs:

[error] GenServer #PID<0.1159.0> terminating
** (UndefinedFunctionError) function PentoWeb.SurveyLive.handle_event/3 is

undefined or private

Did you catch the problem? We did get an undefined handle_event/3, but we got
it for the parent SurveyLive view, not our component! While we could send the
event to SurveyLive, that’s not really in the spirit of using components. Compo-
nents are responsible for wrapping up markup, state, and events. Let’s keep
our code clean, and respect the single responsibility principle.

The DemographicLive.Form should handle both the state for the survey’s demo-
graphic section and the events to manage that state. To fix this, add the fol-
lowing phx-target attribute to your form in the lib/pento_web/live/demograph-
ic_live/form.html.heex template:

<.simple_form
for={@form}

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

phx-change="validate"
phx-submit="save"
id={@id}
phx-target={@myself} <!-- add this line -->

<!-- ... -->

</.simple_form>

The @myself assignment is made available in our component by LiveView, for
free, and it always refers to the current component. This will ensure that any
events sent by LiveView bindings on this element will go to the current com-
ponent, rather than the parent live view.

Now we can send events to our demo form, so it’s time to add some handlers.

Manage Component State
First, we’ll briefly revisit the live component lifecycle that we’ll take advantage
of in order to manage component state. Then, we’ll implement the event
handlers we need to respond to our form events.

Consider the preload/1 Callback
Whenever live_component/1 is first invoked, the component will call mount/1, update/2
and render/1. Sometimes, these callbacks are not enough. You might need an
additional callback called preload/1 to prevent a potentially serious N+ 1 perfor-
mance problem. For the mount/render workflow, LiveView calls preload/1, then
mount/1, followed by update/2, and finally render/1. The change management
workflow drops the mount/1, but maintains preload/1, then update/2, and finally
render/1.

We won’t take advantage of preload/1 in our component, but it’s worth discussing
what it can do for us. This function lets LiveView load all components of the
same type at once, potentially saving many extra database queries. In order
to understand how this works, we’ll look at an example.

Let’s say you were rendering a list of product detail components. You might
accomplish this by iterating over a list of product IDs in the parent live view
and calling live_component/3 to render each product detail component with a
given product ID. Each component in our scenario is responsible for taking
the product ID, using it to query for a product from the database, and render-
ing some markup that displays the product info. Now, imagine that preload/1
does not exist. This means you are rendering a product detail component
once for each product ID in the list. 20 product IDs would mean 20 compo-
nents and 20 queries—each product detail component would need to issue
its own query for the product with the given ID.

• Click HERE to purchase this book now. discuss

Manage Component State • 9

http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

With preload/1, you can specify a way to load all components of the same type
at once, while issuing a single query for all of the products in the list of
product IDs. You should reach for this approach whenever you find yourself
in such a situation.

Because our component doesn’t render any lists or child components, we can
safely move forward without implementing preload/1. We’re ready to teach our
live component how to handle events.

Handle The Save Event
We’re already sending events to our component when the form is saved. Now,
we need to implement a handle_event/3 function for that "save" event. Here’s how
it will work.

First, we’ll build our handle_event/3 function head that matches the "save" event.
The event will receive a socket and the parameters from the form.

Next, we’ll make a reducer to save the form, and return the saved socket.

Finally, we’ll call our reducer in handle_event/3. In this way, our handler will
stay skinny, and we’ll have another single-purpose function to add to our
module.

Let’s start with the handler. We’ll define a function head that pattern matches
the "save" event, and simply logs the result, like this:

pento/lib/pento_web/live/demographic_live/form.ex
def handle_event("save", %{"demographic" => demographic_params}, socket) do

IO.puts("Handling 'save' event and saving demographic record...")
IO.inspect(demographic_params)
{:noreply, socket}

end

Now, if we visit /survey, fill out the demographics form and hit “save”, we should
see the following log statements:

Handling 'save' event and saving and saving demographic record...
%{"gender" => "female", "year_of_birth" => "1989"}

Perfect! Thanks to the phx_target=@myself attribute, our component is receiving
the event. There’s one problem though. Our form params don’t include the
"user_id", and the Survey.create_demographic function we plan to call in our reducer
expects to receive a complete map of all of the demographic params needed
to create a demographic. We can fix this with a simple helper function to get
the ID of the current user socket assignment and add it to the params map:

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

stateful_components/pento/lib/pento_web/live/demographic_live/form.ex
def params_with_user_id(params, %{assigns: %{current_user: current_user}}) do

params
|> Map.put("user_id", current_user.id)

end

We’ll call on this function in the event handler to construct the complete
params to pass to our reducer, like this:

def handle_event("save", %{"demographic" => demographic_params}, socket) do
params = params_with_user_id(demographic_params, socket)
...

end

Now, we can build our reducer to save the event:

defp save_demographic(socket, demographic_params) do
case Survey.create_demographic(demographic_params) do

{:ok, demographic} ->
coming soon!

{:error, %Ecto.Changeset{} = changeset} ->
assign_form(socket, changeset)

end
end

Our component is responsible for managing the state of the demographic
form and saving the demographic record. We lean on the context function,
Survey.create_demographic/1, to do the heavy lifting. We need to handle both the
success and error cases, and we do so. We save the implementation of the :ok
case for later, and simply put the form back in the socket in the event of an
:error. That way, the error tags in our form can tell our user exactly what to
do to fix the form data.

Now, we need to call the reducer in the handler. Key in the following han-
dle_event/3 function to your DemographicLive.Form:

stateful_components/pento/lib/pento_web/live/demographic_live/form.ex
def handle_event("save", %{"demographic" => demographic_params}, socket) do

params = params_with_user_id(demographic_params, socket)
{:noreply, save_demographic(socket, params)}

end

We plug in the reducer, and we’re off to the races. Our implementation is
almost complete. We’re left with one final question, what should our reducer
do if the save succeeds? We’ll look at that problem next.

• Click HERE to purchase this book now. discuss

Manage Component State • 11

http://media.pragprog.com/titles/liveview/code/stateful_components/pento/lib/pento_web/live/demographic_live/form.ex
http://media.pragprog.com/titles/liveview/code/stateful_components/pento/lib/pento_web/live/demographic_live/form.ex
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

Send a Message to the Parent
At a high level, when the form saves successfully, we should stop rendering
the form and instead render the demographic’s details. This sounds like a
job for the SurveyLive view! After all, SurveyLive is responsible for managing the
overall survey state.

If the SurveyLive is going to stop showing the demographic form and instead
show the completed demographic details, we’ll need some way for the form
component to tell SurveyLive that it’s time to do so. We need to send a message
from the child component to the parent live view.

It turns out that it’s easy to do so with plain old Elixir message passing via
the send function.

Remember, our component is running in the parent’s process and they share
a PID. So, we can use the component’s own PID to send a message to the
parent. Then, we can implement a handler in the parent live view that receives
that message. Our LiveView is a plain old GenServer2 so it implements its
own behaviour with its own callbacks. handle_info/23 is the GenServer callback
function for receiving generic Elixir messages. Update save_demographic/2 to send
a message to the parent on success:

stateful_components/pento/lib/pento_web/live/demographic_live/form.ex
defp save_demographic(socket, demographic_params) do

case Survey.create_demographic(demographic_params) do
{:ok, demographic} ->
send(self(), {:created_demographic, demographic})
socket

{:error, %Ecto.Changeset{} = changeset} ->
assign_form(socket, changeset)

end
end

Now, we’ll implement handle_info/2 to teach the SurveyLive view how to respond
to our message.

stateful_components/pento/lib/pento_web/live/survey_live.ex
def handle_info({:created_demographic, demographic}, socket) do

{:noreply, handle_demographic_created(socket, demographic)}
end

The function head of handle_info/2 matches our message—a tuple with the
message name and a payload containing the saved demographic—and receives

2. https://hexdocs.pm/elixir/1.14/GenServer.html
3. https://hexdocs.pm/elixir/1.14/GenServer.html#c:handle_info/2

• 12

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/liveview/code/stateful_components/pento/lib/pento_web/live/demographic_live/form.ex
http://media.pragprog.com/titles/liveview/code/stateful_components/pento/lib/pento_web/live/survey_live.ex
https://hexdocs.pm/elixir/1.14/GenServer.html
https://hexdocs.pm/elixir/1.14/GenServer.html#c:handle_info/2
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

the socket. As usual, we want skinny handlers, so we call the handle_demograph-
ic_created/2 reducer to do the work. Now, we need to decide exactly what work
to do in the handle_demographic_created/2 function.

We’ll want to notify the user that the save was successful, and store the new
demographic in the socket. Let’s implement those new features in handle_demo-
graphic_create/2, like this:

stateful_components/pento/lib/pento_web/live/survey_live.ex
def handle_demographic_created(socket, demographic) do

socket
|> put_flash(:info, "Demographic created successfully")
|> assign(:demographic, demographic)

end

We pipe our socket through functions to store a flash message and add the
:demographic assign key to our socket. The SurveyLive live view will re-render, this
time with the :demographic key in socket assigns set to a valid demographic
struct. Now, when the conditional logic in the SurveyLive template runs, the
check for the @demographic assignment will evaluate as true. So, we will invoke
the DemographicLive.Show.details function component to display the demographic
details instead of displaying the form.

Let’s see it in action. Log in as a user that does not yet have an associated
demographic record. Then, point your browser at /survey and submit the
demographic form. You should see the flash message, and you’ll also see the
form replaced with the demographic details, as in this image:

Great! With that, we’ve beautifully composed a set of layered components to
support the beginnings of our survey UI. Each piece of the puzzle is simple
and sweet—the SurveyLive live view conditionally renders either a child function
component to display the demographic details or a child live component to
display the interactive form. The SurveyLive view’s state runs the show—the
presence or absence of a demographic in socket assigns tells the child com-

• Click HERE to purchase this book now. discuss

Manage Component State • 13

http://media.pragprog.com/titles/liveview/code/stateful_components/pento/lib/pento_web/live/survey_live.ex
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

ponents how to behave, and each child component has just one job to do. In
this way, we can break down even complex view logic into simple components.

Our survey UI has a solid foundation. We’re ready to build out the ratings
flow.

• 14

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

