
Extracted from:

Programming Phoenix LiveView
Interactive Elixir Web Programming

Without Writing Any JavaScript

This PDF file contains pages extracted from Programming Phoenix LiveView, pub-
lished by the Pragmatic Bookshelf. For more information or to purchase a paper-

back or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Programming Phoenix LiveView
Interactive Elixir Web Programming

Without Writing Any JavaScript

Bruce A. Tate
Sophie DeBenedetto

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-821-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—February 25, 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Introduction
If you haven’t been following closely, it might seem like LiveView came sud-
denly, like a new seedling that breaks through the soil surface overnight.
That narrative lacks a few important details, like all of the slow germination
and growth that happens out of sight.

Chris McCord, the creator of Phoenix, worked on Ruby on Rails before coming
over to the Elixir community. More and more often, his consultancy was asked
to use Ruby on Rails to build dynamic single-page apps (SPAs). He tried to
build a server-side framework on top of the Ruby on Rails infrastructure,
much like LiveView, that would allow him to meet these demands for interac-
tivity. But Chris recognized that the Ruby infrastructure was not robust
enough to support his idea. He needed better reliability, higher throughput,
and more even performance. He shopped around for a more appropriate lan-
guage and infrastructure, and found Elixir.

When Chris moved from Ruby to Elixir, he first learned the metaprogramming
techniques1 he’d need to implement his vision. Then, he began building the
Phoenix web development framework to support the infrastructure he’d need
to make this vision a reality.

At the same time, José Valim, creator of Elixir, had given up on Dynamo, a
web server for Elixir. He had begun working with Bruce Tate on the Plug
framework, in hopes of building the infrastructure that could support a web
server. A few months later, in a conference room in San Francisco, Chris met
José, creator of Elixir. They began to work together on a web server for the
Elixir language, one capable of supporting José’s vision of reliability at scale
with Chris’ vision of server-side development for SPAs.

At that time, José Valim began coaching Chris in building abstractions relying
on OTP. OTP libraries have powered many of the world’s phone switches,
offering stunning uptime statistics and near realtime performance, so it played

1. https://pragprog.com/titles/cmelixir/metaprogramming-elixir/

• Click HERE to purchase this book now. discuss

https://pragprog.com/titles/cmelixir/metaprogramming-elixir/
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

a critical role in Phoenix. They introduced a programming model to Phoenix
called channels. This service uses HTTP WebSockets2 and OTP to simplify
interactions in Phoenix. As they fleshed out the programming model, they
saw stunning performance and reliability numbers. Because of OTP, Phoenix
would support the concurrency, reliability, and performance that interactive
applications demand.

In functional programming, Chris found cleaner ways to tie his ideas together
than object orientation offered. He learned to compose functions with Elixir
pipelines and the plugs. His work with OTP taught him to think in terms of
the reducer functions we’ll show you as this book unfolds. His work with
metaprogramming and macros prepared him to build smooth features beyond
what basic Elixir provided. As a result, in Phoenix LiveView, users would find
a pleasant, productive programming experience.

As the web programming field around him grew, frameworks like React and
languages like Elm provided a new way to think about user interface develop-
ment in layers. Chris took note. Some frameworks like Morphdom popped up
to allow seamless replacement of page elements in a customizable way. The
Phoenix team was able to build JavaScript features into LiveView that auto-
mate the process of changing a user interface on a socket connection. In
LiveView, programmers would find a beautiful programming model based on
tested concepts, and one that provided JavaScript infrastructure so developers
didn’t need to write their own JavaScript.

In a nutshell, that’s LiveView. We’ll have plenty of time to go into more detail,
but now, let’s talk about you.

Is This Book for You?
This book is for advanced beginners and intermediate programmers who want
to build web applications using Phoenix LiveView. In it, you’ll learn the basic
abstractions that make LiveView work, and you’ll explore techniques that
help you organize your code into layers that make sense. We will try not to
bore you with a tedious feature-by-feature march. Instead, we’ll help you
grasp LiveView by building a nontrivial application together.

We think this book is ideal for these readers:

2. https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

Introduction • iv

• Click HERE to purchase this book now. discuss

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

You Want to Build Something with LiveView
In this book, you’ll learn the way the experts do. You’ll write programs that
communicate the most important LiveView concepts. You’ll take four passes
through the content.

• You’ll start with a trivial example.
• Then, you’ll generate some working code, and walk through it step by

step with the authors.
• After that, you’ll extend those programs while tacking on your own code.
• Finally, you’ll code some complex programs from scratch.

When you’re done, you’ll know the base abstractions of Phoenix LiveView,
you’ll know how to build on them, and you’ll be able to write code from scratch
because you’ll know what code goes where.

You Are Having a Hard Time Getting Started
Phoenix LiveView is a brilliant programming model, but it’s not always an
easy model to grasp. Sometimes, you need a guide. In this book, we break
down the basics in small examples like this one:

mount() |> hanndle_event() |> render()

Of course, LiveView is a bit more complicated, but this short example commu-
nicates the overarching organization underneath every single LiveView pro-
gram. We’ll show you how this example makes it easier to understand the
LiveView layer, and we’ll show you tools you can use to understand where to
place the other bits of your program.

When you’re done, you’ll know how LiveView works. More importantly, you’ll
know how it works with the other layers in your Phoenix application.

You Want to Know Where Your Layers Go
LiveView is just one part of a giant ecosystem. Along the way, you will
encounter concepts such as Ecto, OTP, Phoenix, templates, and components.
The hard part about coding LiveView isn’t building code that works the first
time.

If you want code that lasts, you’ll need to break your software into layers, the
way the experts do. We’ll show you how Phoenix developers organize a core
layer for predictable concepts, and to manage uncertainty in a boundary
layer. Then, you’ll explore how to apply some of the same concepts in the
user interface. We’ll show you how to break off major components, and also
how to write functions that will be primed for reuse.

• Click HERE to purchase this book now. discuss

Is This Book for You? • v

http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

If you are seeking organizational guidance, you’ll be able to fit the concepts
in this book right into your mental bookshelf. You won’t just know what to
do; you’ll know why to do it that way.

You Like to Play
If you want to program just for the joy of it, LiveView is going to be great for
you. The programming model keeps your brain firmly on the server, and lets
you explore one concept at a time. Layering on graphics makes this kind of
exploratory programming almost magical. If this paragraph describes you,
LiveView will give your mind room to roam, and the productivity to let your
fingers keep up.

This Book Might Not Be For You
While most LiveView developers will have something to learn from us, two
groups might want to consider their purchase carefully. Advanced Elixir
developers might find this book too basic, and early stage beginners might
find it too advanced. Let us explain.

If you’ve never seen Elixir before, you’ll probably want to use other resources
to learn Elixir, and come back later. If you don’t yet know Elixir, we’ll provide
you with a few resources you might try before coming back to this book.

Alternative Resources
If you are new to functional programming and want to learn it with a book,
try Learn Functional Programming with Elixir. [Alm18] For a book for program-
mers that ramps up more quickly, try Programming Elixir. [Tho18] For a mul-
timedia approach, check out Groxio.3

Similarly, this book might move a bit slowly for if you are an advanced pro-
grammer, so you have a difficult decision to make since there aren’t many
LiveView books out yet. We won’t be offended if you look elsewhere. If you are
building APIs in Phoenix, but not single-page apps, this book is not for you,
though you will probably enjoy what Programming Phoenix [TV19] has to say.
If you want an advanced book about organizing Elixir software, check out
Designing Elixir Systems with OTP. [IT19]

If you’re willing to accept a book that’s paced a bit slowly for advanced
developers, we’re confident that you will find something you can use.

3. https://grox.io/language/elixir/course

Introduction • vi

• Click HERE to purchase this book now. discuss

https://grox.io/language/elixir/course
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

About this Book
Programmers learn by writing code, and that’s exactly how this book will
work. We’ll work on a project together as if we’re a fictional game company.
You’ll write lots of code, starting with small tweaks of generated code and
building up to major enhancements that extract common features with com-
ponents.

As you build the application, you’ll encounter more complexity. A distributed
dashboard will show a real time view of other users and processes. You’ll even
build a game from scratch because that’s the best way to learn how to layer
the most sophisticated LiveView applications.

Let’s take a more detailed look at the plan.

Part I: Code Generation
We’ll use two different code generators to build the foundational features of
the Pento web app—a product database with an authenticated LiveView admin
interface.

We won’t treat our generated code as black boxes. Instead, we’ll trace through
the generated code, taking the opportunity to learn LiveView and Phoenix
design and best practices from some of the best Elixir programmers in the
business. We’ll study how the individual pieces of generated code fit together
and discuss the philosophy of each layer. We’ll show you when to reach for
generators and what you’ll gain from using them.

Chapter 2, Phoenix and Authentication, on page ?
The phx.gen.auth authentication layer generator is a product of DashBit,
the company co-founded by José Valim, creator of Elixir. This code doesn’t
use LiveView, but we’ll need this generator to authenticate users for our
applications. You’ll generate and study this layer to learn how Phoenix
requests work. Then, you’ll use the generated code to authenticate a live
view.

Chapter 3, Generators: Contexts and Schemas, on page ?
The phx.gen.live generator was created by Chris McCord and the rest of the
Phoenix team, with José’s strong guidance. We’ll use this generator to
generate the product CRUD feature-set. Since the code created by the
phx.gen.live generator contains a complete out-of-the-box set of live views
backed by a database, we’ll spend two chapters discussing it. This chapter
will focus on the two backend layers—the core and the boundary. The
boundary layer, also referred to as the context, represents code that has

• Click HERE to purchase this book now. discuss

About this Book • vii

http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

uncertainty, such as database interfaces that can potentially fail. The
context layer will allow our admin users to manage products through an
API. The core layer contains code that is certain and behaves predictably,
for example, code that maps database records and constructs queries.

Chapter 4, Generators: Live Views and Templates, on page ?
The phx.gen.live generator also generates a set of web modules, templates,
and helpers that use the database-backed core and boundary layers
detailed in the previous chapter. This chapter will cover the web side of
this generator, including the LiveView, templates, and all of the supporting
user interface code. Along the way, we’ll take a detailed look at the gener-
ated LiveView code and trace how the pieces work together. This walk-
through will give you a firm understanding of LiveView basics.

With the LiveView basics under your belt, you’ll know how to generate code
to do common tasks, and extend your code to work with forms and validations.
You’ll be ready to build your own custom live views using components.

Part II: LiveView Composition
LiveView lets you compose complex change management behavior with layers.
First, we’ll look at how LiveView manages change with the help of changesets
and you’ll see how you can compose change management code in your live
views. Then, we’ll take a deep dive into LiveView components. Components
are a mechanism for compartmentalizing live view behavior and state. A single
live view can be comprised of a set of small components, each of which is
responsible for managing a specific part of your SPA’s state. In this part, you’ll
use components to build organized live views that handle sophisticated
interactive features by breaking them down into smaller pieces. Let’s talk
about some of those features now.

With our authenticated product management interface up and running, our
Pento admins will naturally want to know how those products are performing.
So, we’ll use LiveView, and LiveView components, to do a bit of market
research.

We’ll build a survey feature that collects demographic information and product
ratings from our users. We’ll use two LiveView component features to do this
work.

Chapter 5, Forms and Changesets, on page ?
After we’ve generated a basic LiveView, we’ll take a closer look at forms.
Ecto, the database layer for Phoenix, provides an API, called changesets,
for safely validating data. LiveView relies heavily on them to present forms

Introduction • viii

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

with validations. In this chapter, we’ll take a second pass through basic
changesets and form tags for database-backed data. Then, we’ll work with
a couple of corner cases including changesets without databases and
attachment uploads.

Chapter 6, Stateless Components, on page ?
We’ll use stateless components to start carving up our work into reusable
pieces. These components will work like partial views. We’ll use them to
build the first pieces of a reusable multi-stage poll for our users. In the
first stage, the user will answer some demographic questions. In the next
stage, the user will rate several products. Along the way, you’ll encounter
the techniques that let LiveView present state across multiple stages.

Chapter 7, Stateful Components, on page ?
As our components get more sophisticated, we’ll need to increase their
capability. We’ll need them to capture events that change the state of our
views. We’ll use stateful components to let our users interact with pieces
of our survey by tying common state to events.

By this point, you’ll know when and how to reach for components to keep
your live views manageable and organized.

Part III: Extend LiveView
In the next few chapters, you’ll see how you can extend the behavior of your
custom live view to support real-time interactions. We’ll use communication
between a parent live view and child components, and between a live view
and other areas of your Phoenix app, to get the behavior we want. You’ll learn
how to use these communication mechanisms to support distributed SPAs
with even more advanced interactivity.

Having built the user surveys, we’ll need a place to evaluate their results.
We’ll build a modular admin dashboard that breaks out survey results by
demographic and product rating. Our dashboard will be highly interactive
and responsive to both user-triggered events and events that occur elsewhere
in our application.

We’ll approach this functionality in three chapters.

Chapter 8, Build an Interactive Dashboard, on page ?
Users will be able to filter results charts by demographic info and rating.
We’ll leverage the functions and patterns that LiveView provides for the
event management lifecycle and you’ll see how components communicate
with the live view to which they belong.

• Click HERE to purchase this book now. discuss

About this Book • ix

http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

the (as yet) unwritten Chapter 9, Build a Distributed Dashboard,
Our survey results dashboard won’t just update in real-time to reflect
state changes brought about by user interaction on the page. It will also
reflect the state of the entire application by updating in real-time to include
any new user survey results, as they are submitted by our users. This
distributed real-time behavior will be supported by Phoenix PubSub.

the (as yet) unwritten Chapter 10, Test Your Live Views,
Once our dashboard is up and running, we’ll take a step back and write
some tests for the features we’ve built. We’ll examine the testing tools
that LiveView provides and you’ll learn LiveView testing best practices to
ensure that your live views are robustly tested as they grow in complexity.

When we’re done, you’ll understand how to use components to compose even
complex single-page behaviors into one elegant and easy-to-maintain live
view. You’ll also know how to track and display system-wide information in
a live view. You’ll have everything you need to build and maintain highly-
interactive, real-time, distributed single-page applications with LiveView.

With all of that under our belts, we’ll prototype a game.

Part IV: Graphics and Custom Code Organization
We know games aren’t the best use case for LiveView. It’s usually better to
use a client-side technology to solve a pure client-side problem, but bear with
us. We strongly believe that games are great teaching tools for the layering
of software. They have well-understood requirements, and they have complex
flows that often mirror problems we find in the real world. Building out our
game will give you an opportunity to put together everything you’ve learned,
from the basics to the most advanced techniques for building live views.

In this set of chapters, we’ll prototype a proof-of-concept for a game. A quick
proof of concept is firmly in LiveView’s wheelhouse, and it can save tons of
time and effort over writing games in less productive environments.

Our game will consist of simple puzzles of five-unit shapes called pentominoes.
Here are the concepts we’ll focus on. By this point, none of these concepts
will be new to you, but putting them into practice here will allow you to
master them.

the (as yet) unwritten Chapter 11, Custom Cores,
We’ll build our game in layers beginning with a layer of functions called
the core. We’ll review the reducer method and drive home why it’s the
right way to model functional software within functional cores. We’ll use

Introduction • x

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

this technique to build the basic shapes and functions that will make up
our game.

the (as yet) unwritten Chapter 12, Render Graphics With SVG,
We integrate the details of our game into a basic presentation layer.
LiveView is great at working with text, and SVG is a text-based graphics
representation. We’ll use SVG to represent the game board and each
pentomino within that board.

the (as yet) unwritten Chapter 13, Establish Boundaries and APIs,
As our software grows, we’ll need to be able to handle uncertainty. Our
code will do so in a boundary layer. Our boundary will implement the
rules that effectively validate movements, limiting how far the pentominoes
can move on the page. We’ll also integrate the boundary layer into our
live view.

These low-level details will perfectly illustrate how the different parts of Elixir
work together in a LiveView application. When you’re through with this part,
you’ll have practiced the techniques you’ll need to build and organize your
own complex LiveView applications from the ground up.

Online Resources
The apps and examples shown in this book can be found at the Pragmatic
Programmers website for this book.4 You’ll also find the errata-submission
form, where you can report problems with the text or make suggestions for
future versions. If you want to explore more from these authors, you can read
more of Sophie’s fine work at Elixir School.5 If you want to expand on this
content with videos and projects to further your understanding, check out
Groxio’s LiveView course,6 with a mixture of free and paid content.

When you’re ready, turn the page and we’ll get started. Let’s build something
together!

4. http://pragprog.com/titles/liveview/
5. https://elixirschool.com/blog/phoenix-live-view/
6. https://grox.io/language/liveview/course

• Click HERE to purchase this book now. discuss

Online Resources • xi

http://pragprog.com/titles/liveview/
https://elixirschool.com/blog/phoenix-live-view/
https://grox.io/language/liveview/course
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

