
Extracted from:

Programming Phoenix LiveView
Interactive Elixir Web Programming

Without Writing Any JavaScript

This PDF file contains pages extracted from Programming Phoenix LiveView, pub-
lished by the Pragmatic Bookshelf. For more information or to purchase a paper-

back or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Programming Phoenix LiveView
Interactive Elixir Web Programming

Without Writing Any JavaScript

Bruce A. Tate
Sophie DeBenedetto

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-821-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: B1.0—February 25, 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 7

Stateful Components
In the previous chapter, we began building an interactive survey with compo-
nents. First, we reached for a stateless component to render the demographic
form, only to find that it’s not sufficient for our purposes. In this chapter,
we’ll convert that stateless component into a stateful one so that it can have
event handlers that change state. Then, we’ll build out the ratings survey
components and compose them into our fully interactive survey.

Along the way, you’ll learn how components can communicate with their
parent live view, you’ll see how components allow you to build clean and
organized code that adheres to the single responsibility principle, and you’ll
implement component composition logic that allows you to manage even
complex state for your single page applications.

Make the Demographic Component Stateful
We already know that we need to convert our stateless demographic form
component into a stateful one. Luckily, it’s easy to make our component
stateful. All we need to do is add an :id. Then our component will be able to
respond to events and manage its own state.

You probably expected a long, involved discussion about stateful components
here, but that’s really all there is to it. Let’s add that :id now, like this:

stateful_components/pento/lib/pento_web/live/survey_live.html.leex
<%= live_component @socket,

PentoWeb.DemographicLive.FormComponent,
user: @current_user,
id: "demographic-form-#{@current_user.id}"%>

Nice. We simply add the :id to the assigns argument given to live_component/3
and we’re off to the races. LiveView identifies stateful components by their
component module and the provided :id. Ecto IDs and other application IDs

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/liveview/code/stateful_components/pento/lib/pento_web/live/survey_live.html.leex
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

are fair game as long as that ID is unique to the call to live_component/3 on the
given page. It’s also worth nothing that the given :id is not used as the DOM
ID. If you want to set a DOM ID, it is your responsibility to set it in your
template.

Now, we can send events to our demo form, so it’s time to add some handlers.
First, we’ll briefly discuss the stateful component lifecycle that we’ll take
advantage of in order to manage component state.

Manage Component State
The lifecycle of a stateful component is a little different from the stateless
component lifecycle. Whenever live_component is called, a stateless component
will invoke mount/1, update/2 and render/1. A stateful component, on the other
hand, has an additional callback. On first render, it will call preload/1 before
calling mount/1, update/2 and then render/1. Subsequent renders of stateful com-
ponents will not trigger mount/1. Instead, preload/1 is called, followed by update/2
and then render/1.

We won’t take advantage of preload/1 in our component, but its worth discussing
what it can do for us. The preload/1 function lets LiveView load all components
of the same type at once. In order to understand how this works, we’ll look
at an example.

Let’s say you were rendering a list of product detail components. You might
accomplish this by iterating over a list of product IDs in the parent live view
and calling live_component/3 to render each product detail component with a
given product ID. Each component in our scenario is responsible for taking
the product ID, using it to query for a product from the database, and render-
ing some markup that displays the product info. Now, imagine that preload/1
does not exist. This means you are rendering a product detail component
once for each product ID in the list. 20 product IDs would mean 20 compo-
nents and 20 queries—each product detail component would need to issue
its own query for the product with the given ID.

With preload/1, you can specify a way to load all components of the same type
at once, while issuing a single query for all of the products in the list of
product IDs. You should reach for this approach whenever you find yourself
in such a situation.

We don’t have that problem, so let’s move on. We’re ready to teach our
stateful component how to handle events.

• 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

Target an Event
So far, most of the events we’ve seen get sent to the parent live view. We even
accidentally sent the demographic form save event to the parent live view in
the previous chapter. Let’s fix that now. In order to send an event to some
component, we need to specify a phx-target HTML attribute with the id of the
component we want to receive the event.

Most often, we want events to be received by the component whose template
is sending them. To make that easy to do, LiveComponent automatically sets
a key in the component’s assigns called :myself with a value of the id we pass
in to the component. Let’s add the phx-target to our form component now:

<%= f = form_for @changeset, "#",
phx_target: @myself,
phx_submit: "save",
id: "demographic-form"%>

<%= label f, :gender %>
<%= select f, :gender, ["female", "male", "other", "prefer not to say"] %>
<%= error_tag f, :gender %>

<%= label f, :year_of_birth %>
<%= select f, :year_of_birth, Enum.reverse(1940..2020)%>
<%= error_tag f, :year_of_birth %>

<%= hidden_input f, :user_id %>

<%= submit "Save", phx_disable_with: "Saving..." %>
</form>

Here, we’ve added the new phx-target attribute, giving it a value of the @myself
assignment.

Now that we’re sending events to the stateful demographic form component,
let’s teach it how to handle them.

Handle The Save Event
We need to implement a handle_event/3 function for the save event. Here’s how
it will work.

First, we’ll build our handle_event/3 function head that matches the save event.
The event will receive a socket and the parameters of the form.

Next, we’ll make a reducer to save the form, and return the saved socket.

Finally, we’ll call our reducer in handle_event/3. In this way, our handler will
stay skinny, and we’ll have another single-purpose function to add to our
module.

• Click HERE to purchase this book now. discuss

Make the Demographic Component Stateful • 5

http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

Let’s start with the handler. We’ll define a function head that pattern matches
the save event, and simply logs the result, like this:

pento/lib/pento_web/live/demographic_live/form_component.ex
def handle_event("save", %{"demographic" => demographic_params}, socket) do

IO.puts("Handling 'save' event and saving demographic record...")
IO.inspect(demographic_params)
{:noreply, socket}

end

Now, if we visit /survey, fill out the demographics form and hit “save”, we should
see the following log statements:

Handling 'save' event and saving and saving demographic record...
%{"gender" => "female", "year_of_birth" => "1989"}

Perfect! Thanks to the phx_target: @myself attribute, our component is getting
the event. Now, we can build our reducer to save the event:

defp save_demographic(socket, demographic_params) do
case Survey.create_demographic(demographic_params) do

{:ok, demographic} ->
coming soon!
socket

{:error, %Ecto.Changeset{} = changeset} ->
assign(socket, changeset: changeset)

end
end

Our component is responsible for managing the state of the demographic
form and saving the demographic record. We lean on the context function,
Survey.create_demographic/1, to do the heavy lifting. We need to handle both the
success and error cases, and we do so. We save the implementation of the :ok
case for later, and simply put the changeset back in the socket in the event
of an :error. That way, the error tags in our form can tell our user exactly what
to do to fix the form data.

Now, we need to call the reducer in the handler. Key in the following han-
dle_event/3 function to your DemographicLive.FormComponent:

stateful_components/pento/lib/pento_web/live/demographic_live/form_component.ex
def handle_event("save", %{"demographic" => demographic_params}, socket) do

{:noreply, save_demographic(socket, demographic_params)}
end

We plug in the reducer, and we’re off to the races. Our implementation is
almost complete. We’re left with one final question, what should our reducer
do if the save succeeds? We’ll look at that problem next.

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/liveview/code/stateful_components/pento/lib/pento_web/live/demographic_live/form_component.ex
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

Send a Message to the Parent
At a high level, when the form saves successfully, we should stop rendering
the form and instead render the demographic’s details. This sounds like a
job for the SurveyLive view! After all, SurveyLive is responsible for managing the
overall survey state.

If the SurveyLive is going to stop showing the demographic form and instead
show the completed demographic details, we’ll need some way for the form
component to tell SurveyLive that it’s time to do so. We need to send a message
from the child component to the parent live view.

It turns out that it’s easy to do so with plain old Elixir message passing via
the send function.

Remember, our component is running in the parent’s process and they share
a pid. So, we can use the component’s own pid to send a message to the parent.
Then, we can implement a handler in the parent live view that receives that.
It turns out that handle_info/2 is the tool for the task.

Update save_demographic/2 to send a message to the parent on success:

stateful_components/pento/lib/pento_web/live/demographic_live/form_component.ex
def save_demographic(socket, demographic_params) do

case Survey.create_demographic(demographic_params) do
{:ok, demographic} ->
send(self(), {:created_demographic, demographic})
socket

{:error, %Ecto.Changeset{} = changeset} ->
assign(socket, changeset: changeset)

end
end

Now, we’ll implement handle_info/2 to teach the SurveyLive view how to respond
to our message.

stateful_components/pento/lib/pento_web/live/survey_live.ex
def handle_info({:created_demographic, demographic}, socket) do

{:noreply, handle_demographic_created(socket, demographic)}
end

The function head of handle_info/2 matches our message—a tuple with the
message name and a payload containing the saved demographic—and receives
the socket. As usual, we want skinny handlers, so we call the handle_demograph-
ic_created/2 reducer to do the work. Now, we need to decide exactly what work
to do in the handle_demographic_created/2 function.

• Click HERE to purchase this book now. discuss

Make the Demographic Component Stateful • 7

http://media.pragprog.com/titles/liveview/code/stateful_components/pento/lib/pento_web/live/demographic_live/form_component.ex
http://media.pragprog.com/titles/liveview/code/stateful_components/pento/lib/pento_web/live/survey_live.ex
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

Let’s add a flash message to the page to indicate to the user that their
demographic info is saved, and let’s store the newly created demographic in
the survey state by adding it to socket.assigns. Define your handle_demographic_create/2
to do exactly that:

stateful_components/pento/lib/pento_web/live/survey_live.ex
def handle_demographic_created(socket, demographic) do

socket
|> put_flash(:info, "Demographic created successfully")
|> assign(:demographic, demographic)

end

We pipe our socket through functions to store a flash message and add the
:demographic assign key to our socket. Now, we are ready to act on that data.

At this point, we want the SurveyLive to stop rendering the DemographicLive.Form-
Component, so the corresponding template needs to get just a little bit smarter.
If the demographic is present, the template should display the demographic
details. Otherwise, it should display the form component. Go ahead and add
this logic to your template:

<%= if @demographic do %>
<h3>Demographics</h3>

Year of birth: <%= @demographic.year_of_birth %>
Gender: <%= @demographic.gender %>

<% else %>
<%= live_component @socket,

PentoWeb.DemographicLive.FormComponent,
user: @current_user,
id: "demographic-form-#{@current_user.id}"%>

<% end %>

Perfect.

We have one problem though. As written, this template will fail when we ini-
tially mount the live view—our live view only adds the :demographic key to
assigns after the user submits the form and saves the record successfully.
That means we need to tweak mount/3 function to query for the demographic
and add it to socket.assigns. Update your mount/3 function with this new reducer
pipeline:

def mount(_params, %{"user_token" => token}, socket) do
{:ok,

socket
|> assign_user(token)
|> assign_demographic()}

end

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/liveview/code/stateful_components/pento/lib/pento_web/live/survey_live.ex
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

As usual, we delegate this job to a single-purpose reducer, increasing the
library of functions we can reuse. Recall we already have a context function
to do the job, so let’s write that reducer now:

stateful_components/pento/lib/pento_web/live/survey_live.ex
def assign_demographic(%{assigns: %{current_user: current_user}} = socket) do

assign(socket, :demographic, Survey.get_demographic_by_user(current_user))
end

It is a short, single-purpose function that does exactly what you’d expect,
and that’s the mark of good Elixir.

It’s finally time to put all of this code together. Now, when we point our
browser to /survey, and submit the demographic form, we should see the flash
message, and we’ll also see the form replaced with the demographic details,
as in this image:

If you refresh the page, everything works as expected because our mount/3
function correctly sets the demographic data.

The user interface in our template looks OK, but the code is starting to get a
little messy. Luckily, we can clean this up by wrapping up the demographic
details markup in a stateless component. In this way, we can assemble mul-
tiple components into one coherent view.

Let’s build a simple counterpart to our form component, the one that we’ll
show when demographic data exists.

Show a Demographic
Our new component won’t do too much. It will just make the right details
available for a user who has filled out a demographic. This component doesn’t

• Click HERE to purchase this book now. discuss

Show a Demographic • 9

http://media.pragprog.com/titles/liveview/code/stateful_components/pento/lib/pento_web/live/survey_live.ex
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

need to respond to any events. All it needs to do is render the demographic
details in some markup. A stateless component should do the trick here.

First, we’ll implement the component and its template. Then, we’ll render the
component from within the SurveyLive view. We’ll allow SurveyLive to handle the
logic relating to the state of the overall survey—i.e. whether to show the
demographic form or the demographic details—while breaking out individual
pieces of the survey page into their own smaller, more manageable parts.
With this layering of components, LiveView allows us to build complex single-
page flows with ease.

To begin, define the component:

stateful_components/pento/lib/pento_web/live/demographic_live/show_component.ex
defmodule PentoWeb.DemographicLive.ShowComponent do

use PentoWeb, :live_component
end

The component is an empty shell. The use PentoWeb, :live_component line does all
of the heavy lifting for us. We’ll pick up all of the default callbacks, and we’ll
relegate rendering to our template.

stateful_components/pento/lib/pento_web/live/demographic_live/show_component.html.leex
<div class="survey-component-container">

<h2>Demographics <i class="fa fa-check survey"></i></h2>

Gender: <%= @demographic.gender %>
Year of birth: <%= @demographic.year_of_birth %>

</div>

The DemographicLive.ShowComponent nicely compartmentalizes the markup for the
completed demographic, including a snazzy green check to indicate a complet-
ed demographic.

Now, we can render it from our template, below the header, with a call to
live_component/3:

stateful_components/pento/lib/pento_web/live/survey_live.html.leex
<%= if @demographic do %>

<%= live_component @socket,
PentoWeb.DemographicLive.ShowComponent,
demographic: @demographic %>

There’s no :id, so it’s stateless. When you need to send an event to a live view,
you’d need to specify which component gets the event. The :id key serves that
purpose, so if there’s no :id, you can’t send it events, and it’s stateless.

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/liveview/code/stateful_components/pento/lib/pento_web/live/demographic_live/show_component.ex
http://media.pragprog.com/titles/liveview/code/stateful_components/pento/lib/pento_web/live/demographic_live/show_component.html.leex
http://media.pragprog.com/titles/liveview/code/stateful_components/pento/lib/pento_web/live/survey_live.html.leex
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

Let’s see it in action. If a user who has not filled out the demographic form
visits the page, they will see the form rendered:

And if a user who has filled out the demographic form visits the page, they
will see their demographic details rendered:

That’s exactly what we want, so the demographics are done. Now, we can
move on to the ratings portion.

• Click HERE to purchase this book now. discuss

Show a Demographic • 11

http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

