
Extracted from:

Modern C++ Programming with
Test-Driven Development

Code Better, Sleep Better

This PDF file contains pages extracted from Modern C++ Programming with Test-
Driven Development, published by the Pragmatic Bookshelf. For more information
or to purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2013 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Modern C++ Programming with
Test-Driven Development

Code Better, Sleep Better

Jeff Langr

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Michael Swaine (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-48-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—October 2013

http://pragprog.com

2.1 Setup

Write a test, get it to pass, clean up the design. That’s all there is to TDD. Yet
these three simple steps embody a significant amount of sophistication.
Understand how to take advantage of TDD, and you will be rewarded with
many benefits. Fail to heed what others have learned, and you will likely give
up on TDD.

Rather than let you flounder, I’d like to guide you through test-driving some
code in order to help you understand what happens at each step. You’ll learn
best by coding along with the example in this chapter. Make sure you’ve set
up your environment properly (see Chapter 1, Global Setup, on page ?).

While not large, the example we’ll work through isn’t useless or trivial (but
it’s also not rocket science). It provides many teaching points and demonstrates
how TDD can help you incrementally design a reasonably involved algorithm.

I hope you’re ready to code!

2.2 The Soundex Class

Searching is a common need in many applications. An effective search should
find matches even if the user misspells words. Folks misspell my name in
endless ways: Langer, Lang, Langur, Lange, and Lutefisk, to name a few. I’d
prefer they find me regardless.

In this chapter, we will test-drive a Soundex class that can improve the search
capability in an application. The long-standing Soundex algorithm encodes
words into a letter plus three digits, mapping similarly sounding words to the
same encoding. Here are the rules for Soundex, per Wikipedia:1

1. Retain the first letter. Drop all other occurrences of a, e, i, o, u, y, h, w.

2. Replace consonants with digits (after the first letter):

• b, f, p, v: 1
• c, g, j, k, q, s, x, z: 2
• d, t : 3
• l: 4
• m, n: 5
• r: 6

3. If two adjacent letters encode to the same number, encode them instead
as a single number. Also, do so if two letters with the same number are

1. http://en.wikipedia.org/wiki/Soundex

• Click HERE to purchase this book now. discuss

http://en.wikipedia.org/wiki/Soundex
http://pragprog.com/titles/lotdd
http://forums.pragprog.com/forums/lotdd

separated by h or w (but code them twice if separated by a vowel). This
rule also applies to the first letter.

4. Stop when you have a letter and three digits. Zero-pad if needed.

2.3 Getting Started

A common misconception of TDD is that you first define all the tests before
building an implementation. Instead, you focus on one test at a time and
incrementally consider the next behavior to drive into the system from there.

As a general approach to TDD, you seek to implement the next simplest rule in
turn. (For a more specific, formalized approach to TDD, refer to the TPP [Section
10.4, The Transformation Priority Premise, on page ?].) What useful behavior will
require the most straightforward, smallest increment of code to implement?

With that in mind, where do we start with test-driving the Soundex solution?
Let’s quickly speculate as to what implementing each rule might entail.

Soundex rule #3 appears most involved. Rule #4, indicating when to stop
encoding, would probably make more sense once the implementation of other
rules actually resulted in something getting encoded. The second rule hints
that the first letter should already be in place, so we’ll start with rule #1. It
seems straightforward.

The first rule tells us to retain the first letter of the name and...stop! Let’s
keep things as small as possible. What if we have only a single letter in the
word? Let’s test-drive that scenario.

c2/1/SoundexTest.cpp
#include "gmock/gmock.h"Line 1

TEST(SoundexEncoding, RetainsSoleLetterOfOneLetterWord) {2

Soundex soundex;3

}4

• On line 1, we include gmock, which gives us all the functionality we’ll need
to write tests.

• A simple test declaration requires use of the TEST macro (line 2). The TEST
macro takes two parameters: the name of the test case and a descriptive
name for the test. A test case, per Google’s documentation, is a related
collection of tests that can “share data and subroutines.”2 (The term is
overloaded; to some, a test case represents a single scenario.)

2. http://code.google.com/p/googletest/wiki/V1_6_Primer#Introduction:_Why_Google_C++_Testing_Framework?

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/lotdd/code/c2/1/SoundexTest.cpp
http://code.google.com/p/googletest/wiki/V1_6_Primer#Introduction:_Why_Google_C++_Testing_Framework?
http://pragprog.com/titles/lotdd
http://forums.pragprog.com/forums/lotdd

Test Lists

Each test you write in TDD and get to pass represents a new, working piece of
behavior that you add to the system. Aside from getting an entire feature shipped,
your passing tests represent your best measure of progress. You name each test to
describe the small piece of behavior.

While you don’t determine all the tests up front, you’ll probably have an initial set of
thoughts about what you need to tackle. Many test-drivers capture their thoughts
about upcoming tests in a test list (described first in Test Driven Development: By
Example [Bec02]). The list can contain names of tests or reminders of code cleanup
that you need to do.

You can keep the test list on a scratch pad on the side of your workstation. (You
could also type it at the bottom of your test file as comments—just make sure you
delete them before checking in!) The list is yours alone, so you can make it as brief
or cryptic as you like.

As you test-drive and think of new test cases, add them to the list. As you add code
you know will need to be cleaned up, add a reminder to the list. As you complete a
test or other task, cross it off the list. It’s that simple. If you end up with outstanding
list items at the end of your programming session, set the list aside for a future
session.

You might think of the test list as a piece of initial design. It can help you clarify what
you think you need to build. It can also help trigger you to think about other things
you need to do.

Don’t let the test list constrain what you do or the order in which you do it, however.
TDD is a fluid process, and you should usually go where the tests suggest you go
next.

Managing test lists can be particularly useful when you’re learning TDD. Try it!

Reading the test case name and test name together, left to right, reveals
a sentence that describes what we want to verify: “Soundex encoding
retains [the] sole letter of [a] one-letter word.” As we write additional tests
for Soundex encoding behavior, we’ll use SoundexEncoding for the test
case name to help group these related tests.

Don’t discount the importance of crafting good test names—see the follow-
ing sidebar.

The Importance of Test Names

Take great care with naming. The small investment of deriving highly descriptive test
names pays well over time, as tests are read and reread by others who must maintain

• Click HERE to purchase this book now. discuss

Getting Started • 7

http://pragprog.com/titles/lotdd
http://forums.pragprog.com/forums/lotdd

the code. Crafting a good test name will also help you, the test writer, better under-
stand the intent of what you’re about to build.

You’ll be writing a number of tests for each new behavior in the system. Think about
the set of test names as a concordance that quickly provides a developer with a concise
summary of that behavior. The easier the test names are to digest, the more quickly
you and other developers will find what you seek.

• On line 3, we create a Soundex object, then...stop! Before we proceed with
more testing, we know we’ve just introduced code that won’t compile—we
haven’t yet defined a Soundex class! We’ll stop coding our test and fix the
problem before moving on. This approach is in keeping with Uncle Bob’s
Three Rules of TDD:

– Write production code only to make a failing test pass.

– Write no more of a unit test than sufficient to fail. Compilation failures
are failures.

– Write only the production code needed to pass the one failing test.

(Uncle Bob is Robert C. Martin. See Section 3.4, The Three Rules of TDD,
on page ? for more discussion of the rules.

Seeking incremental feedback can be a great approach in C++, where a
few lines of test can generate a mountain of compiler errors. Seeing an
error as soon as you write the code that generates it can make it easier
to resolve.

The three rules of TDD aside, you’ll find that sometimes it makes more
sense to code the entire test before running it, perhaps to get a better feel
for how you should design the interface you’re testing. You might also
find that waiting on additional slow compiles isn’t worth the trade-off in
more immediate feedback.

For now, particularly as you are learning TDD, seek feedback as soon as
it can be useful. Ultimately, it’s up to you to decide how incrementally
you approach designing each test.

The compiler shows that we indeed need a Soundex class. We could add a
compilation unit (.h/.cpp combination) for Soundex, but let’s make life easier
for ourselves. Instead of mucking with separate files, we’ll simply declare
everything in the same file as the test.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/lotdd
http://forums.pragprog.com/forums/lotdd

Once we’re ready to push our code up or once we experience pain from having
everything in one file, we’ll do things the proper way and split the tests from
the production code.

c2/2/SoundexTest.cpp
class Soundex {➤

};➤

#include "gmock/gmock.h"

TEST(SoundexEncoding, RetainsSoleLetterOfOneLetterWord) {
Soundex soundex;

}

Q.: Isn’t putting everything into a single file a dangerous shortcut?

A.: It’s a calculated effort to save time in a manner that incurs no short-term
complexity costs. The hypothesis is that the cost of splitting files later is less than
the overhead of flipping between files the whole time. As you shape the design of
a new behavior using TDD, you’ll likely be changing the interface often. Splitting
out a header file too early would only slow you down.

As far as “dangerous” is concerned: are you ever going to forget to split the files
before checking in?

Q.: But aren’t you supposed to be cleaning up code as you go as part of following
the TDD cycle? Don’t you want to always make sure that your code retains the
highest possible quality?

A.: In general, yes to both questions. But our code is fine; we’re simply choosing
a more effective organization until we know we need something better. We’re
deferring complexity, which tends to slow us down, until we truly need it. (Some
Agile proponents use the acronym YAGNI—“You ain’t gonna need it.”)

If the notion bothers you deeply, go ahead and separate the files right off the bat.
You’ll still be able to follow through with the rest of the exercise. But I’d prefer you
first try it this way. TDD provides you with safe opportunities to challenge yourself,
so don’t be afraid to experiment with what you might find to be more effective ways
to work.

We’re following the third rule for TDD: write only enough production code to
pass a test. Obviously, we don’t have a complete test yet. The Retains-
SoleLetterOfOneLetterWord test doesn’t really execute any behavior, and it
doesn’t verify anything. Still, we can react to each incremental bit of negative
feedback (in this case, failing compilation) and respond with just enough code
to get past the negative feedback. To compile, we added an empty declaration
for the Soundex class.

Building and running the tests at this point gives us positive feedback.

• Click HERE to purchase this book now. discuss

Getting Started • 9

http://media.pragprog.com/titles/lotdd/code/c2/2/SoundexTest.cpp
http://pragprog.com/titles/lotdd
http://forums.pragprog.com/forums/lotdd

[==========] Running 1 test from 1 test case.
[----------] Global test environment set-up.
[----------] 1 test from SoundexEncoding
[RUN] SoundexEncoding.RetainsSoleLetterOfOneLetterWord
[OK] SoundexEncoding.RetainsSoleLetterOfOneLetterWord (0 ms)
[----------] 1 test from SoundexEncoding (0 ms total)

[----------] Global test environment tear-down
[==========] 1 test from 1 test case ran. (0 ms total)
[PASSED] 1 test.

Party time!

Well, not quite. After all, the test does nothing other than construct an
instance of the empty Soundex class. Yet we have put some important ele-
ments in place. More importantly, we’ve proven that we’ve done so correctly.

Did you get this far? Did you mistype the include filename or forget to end the
class declaration with a semicolon? If so, you’ve created your mistake within
the fewest lines of code possible. In TDD, you practice safe coding by testing
early and often, so you usually have but one reason to fail.

Since our test passes, it might be a good time to make a local commit. Do
you have the right tool? A good version control system allows you to commit
easily every time the code is green (in other words, when all tests are passing).
If you get into trouble later, you can easily revert to a known good state and
try again.

Part of the TDD mentality is that every passing test represents a proven piece
of behavior that you’ve added to the system. It might not always be something
you could ship, of course. But the more you think in such incremental terms
and the more frequently you seek to integrate your locally proven behavior,
the more successful you’ll be.

Moving along, we add a line of code to the test that shows how we expect
client code to interact with Soundex objects.

c2/3/SoundexTest.cpp
TEST(SoundexEncoding, RetainsSoleLetterOfOneLetterWord) {

Soundex soundex;

auto encoded = soundex.encode("A");➤

}

We are making decisions as we add tests. Here we decided that the Soundex
class exposes a public member function called encode() that takes a string
argument. Attempting to compile with this change fails, since encode() doesn’t

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/lotdd/code/c2/3/SoundexTest.cpp
http://pragprog.com/titles/lotdd
http://forums.pragprog.com/forums/lotdd

exist. The negative feedback triggers us to write just enough code to get
everything to compile and run.

c2/4/SoundexTest.cpp
class Soundex
{
public:➤

std::string encode(const std::string& word) const {➤

return "";➤

}➤

};

The code compiles, and all the tests pass, which is still not a very interesting
event. It’s finally time to verify something useful: given the single letter A, can
encode() return an appropriate Soundex code? We express this interest using
an assertion.

c2/5/SoundexTest.cpp
TEST(SoundexEncoding, RetainsSoleLetterOfOneLetterWord) {

Soundex soundex;

auto encoded = soundex.encode("A");

ASSERT_THAT(encoded, testing::Eq("A"));➤

}

An assertion verifies whether things are as we expect. The assertion here
declares that the string returned by encode() is the same as the string we passed
it. Compilation succeeds, but we now see that our first assertion has failed.

[==========] Running 1 test from 1 test case.
[----------] Global test environment set-up.
[----------] 1 test from SoundexEncoding
[RUN] SoundexEncoding.RetainsSoleLetterOfOneLetterWord
SoundexTest.cpp:21: Failure
Value of: encoded
Expected: is equal to 0x806defb pointing to "A"

Actual: "" (of type std::string)
[FAILED] SoundexEncoding.RetainsSoleLetterOfOneLetterWord (0 ms)
[----------] 1 test from SoundexEncoding (0 ms total)

[----------] Global test environment tear-down
[==========] 1 test from 1 test case ran. (0 ms total)
[PASSED] 0 tests.
[FAILED] 1 test, listed below:
[FAILED] SoundexEncoding.RetainsSoleLetterOfOneLetterWord

1 FAILED TEST

• Click HERE to purchase this book now. discuss

Getting Started • 11

http://media.pragprog.com/titles/lotdd/code/c2/4/SoundexTest.cpp
http://media.pragprog.com/titles/lotdd/code/c2/5/SoundexTest.cpp
http://pragprog.com/titles/lotdd
http://forums.pragprog.com/forums/lotdd

At first glance, it’s probably hard to spot the relevant output from Google
Mock. We first read the very last line. If it says “PASSED,” we stop looking at
the test output—all our tests are working! If it says “FAILED” (it does in our
example), we note how many test cases failed. If it says something other than
“PASSED” or “FAILED,” the test application itself crashed in the middle of a
test.

With one or more failed tests, we scan upward to find the individual test that
failed. Google Mock prints a [RUN] record with each test name when it starts
and prints a [FAILED] or [OK] bookend when the test fails. On failure, the lines
between [RUN] and [OK] might help us understand our failure. In the output
for our first failed test shown earlier, we see the following:

[RUN] SoundexEncoding.RetainsSoleLetterOfOneLetterWord
SoundexTest.cpp:21: Failure
Value of: encoded
Expected: is equal to 0x806defb pointing to "A"

Actual: "" (of type std::string)
[FAILED] SoundexEncoding.RetainsSoleLetterOfOneLetterWord (0 ms)

Paraphrasing this assertion failure, Google Mock expected the local variable
encoded to contain the string "A", but the actual string it contained was equal to
the empty string.

We expected a failing assertion, since we deliberately hard-coded the empty
string to pass compilation. That negative feedback is a good thing and part
of the TDD cycle. We want to first ensure that a newly coded assertion—rep-
resenting functionality we haven’t built yet—doesn’t pass. (Sometimes it does,
which is usually not a good thing; see Section 3.5, Getting Green on Red, on
page ?.) We also want to make sure we’ve coded a legitimate test; seeing it
first fail and then pass when we write the appropriate code helps ensure our
test is honest.

The failing test prods us to write code, no more than necessary to pass the
assertion.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/lotdd
http://forums.pragprog.com/forums/lotdd

c2/6/SoundexTest.cpp
std::string encode(const std::string& word) const {

return "A";➤

}

We compile and rerun the tests. The final two lines of its output indicate that
all is well.

[==========] 1 test from 1 test case ran. (0 ms total)
[PASSED] 1 test.

Ship it!

I’m kidding, right? Well, no. We want to work incrementally. Let’s put it this
way: if someone told us to build a Soundex class that supported encoding
only the letter A, we’d be done. We’d want to clean things up a little bit, but
otherwise we’d need no additional logic.

Another way of looking at it is that the tests specify all of the behavior that
we have in the system to date. Right now we have one test. Why would we
have any more code than what that test states we need?

We’re not done, of course. We have plenty of additional needs and require-
ments that we’ll incrementally test-drive into the system. We’re not even done
with the current test. We must, must, must clean up the small messes we just
made.

2.4 Fixing Unclean Code

What? We wrote one line of production code and three lines of test code and
we have a problem? Indeed. It’s extremely easy to introduce deficient code
even in a small number of lines. TDD provides the wonderful opportunity to
fix such small problems as they arise, before they add up to countless small
problems (or even a few big problems).

We read both the test and production code we’ve written, looking for deficien-
cies. We decide that the assertion in our test isn’t reader-friendly.

ASSERT_THAT(encoded, testing::Eq("A"));

Much as the test declaration (the combination of test case and test name)
should read like a sentence, we want our asserts to do the same. We introduce
a using directive to help.

• Click HERE to purchase this book now. discuss

Fixing Unclean Code • 13

http://media.pragprog.com/titles/lotdd/code/c2/6/SoundexTest.cpp
http://pragprog.com/titles/lotdd
http://forums.pragprog.com/forums/lotdd

c2/7/SoundexTest.cpp
#include "gmock/gmock.h"
using ::testing::Eq;➤

TEST(SoundexEncoding, RetainsSoleLetterOfOneLetterWord) {
Soundex soundex;
auto encoded = soundex.encode("A");
ASSERT_THAT(encoded, Eq("A"));➤

}

Now we can paraphrase the assertion with no hiccups: assert that the encoded
value is equal to the string "A".

Our small change is a refactoring, a code transformation in which we retain
existing behavior (as demonstrated by the test) but improve the design. In
this case, we improved the test’s design by enhancing its expressiveness. The
namespace of Eq() is an implementation detail not relevant to the test’s
meaning. Hiding that detail improves the level of abstraction in the test.

Code duplication is another common challenge we face. The costs and risks
of maintenance increase with the amount of code duplication.

Our Soundex class contains no obvious duplication. But looking at both the
test and production code in conjunction reveals a common magic literal, the
string "A". We want to eliminate this duplication. Another problem is that the
test name (RetainsSoleLetterOfOneLetterWord) declares a general behavior,
but the implementation supports only a specific, single letter. We want to
eliminate the hard-coded "A" in a way that solves both problems.

How about simply returning the word passed in?

c2/8/SoundexTest.cpp
class Soundex
{
public:

std::string encode(const std::string& word) const {
return word;➤

}
};

At any given point, your complete set of tests declares the behaviors you
intend your system to have. That implies the converse: if no test describes a
behavior, it either doesn’t exist or isn’t intended (or the tests do a poor job of
describing behavior).

Where am I going with this? We have one test. It says we support one-letter
words. Therefore, we can assume that the Soundex code needs to support

• 14

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/lotdd/code/c2/7/SoundexTest.cpp
http://media.pragprog.com/titles/lotdd/code/c2/8/SoundexTest.cpp
http://pragprog.com/titles/lotdd
http://forums.pragprog.com/forums/lotdd

only one-letter words—for now. And if all words are one letter, the simplest
generalized solution for our test is to simply return the whole word passed
to encode().

(There are other TDD schools of thought about what we might have coded at
this point. One alternate technique is triangulation3—see Triangulation, on
page ?—where you write a second, similar assertion but with a different
data expectation in order to drive in the generalized solution. You’ll discover
more alternate approaches throughout the book, but we’ll keep things simple
for now.)

Our changes here are small, bordering on trivial, but now is the time to make
them. TDD’s refactoring step gives us an opportunity to focus on all issues,
significant or minor, that arise from a small, isolated code change. As we
drive through TDD cycles, we’ll use the refactoring step as our opportunity
to review the design impacts we just made to the system, fixing any problems
we just created.

Our primary refactoring focus will be on increasing expressiveness and elim-
inating duplication, two concerns that will give us the most benefit when it
comes to creating maintainable code. But we’ll use other nuggets of design
wisdom as we proceed, such as SOLID class design principles and code smells.

2.5 Incrementalism

It’s question-and-answer (Q&A) time!

Q.: Do you really code like this, hard-coding things that you know you’ll replace?

A.: I always get this question. Yes.

Q.: It seems stupid!

A.: That’s not a question, but yes, it’s an OK first reaction to think this is stupid.
It felt stupid to me at first, too. I got over it.

Q.: Are we going to keep working like this? How will we get anything done if we
hard-code everything?

A.: That’s two questions, but I’m happy to answer them both! Yes, we will keep
working incrementally. This technique allows us to get a first passing test in place
quickly. No worries, the hard-coded value will last only minutes at most. We know
we’re not done with what we need to build, so we’ll have to write more tests to
describe additional behavior. In this example, we know we must support the rest
of the rules. As we write additional tests, we’ll have to replace the hard-coding with
interesting logic in order to get the additional tests to pass.

3. Test Driven Development: By Example [Bec02]

• Click HERE to purchase this book now. discuss

Incrementalism • 15

http://pragprog.com/titles/lotdd
http://forums.pragprog.com/forums/lotdd

Incrementalism is at the heart of what makes TDD successful. An incremental
approach will seem quite unnatural and slow at first. However, taking small
steps will increase your speed over time, partly because you will avoid errors
that arise from taking large, complicated steps. Hang in there!

Astute readers will note that we’ve already coded something that does not
completely meet the specification (spec) for Soundex. The last part of rule #4
says that we must “fill in zeros until there are three numbers.” Oh, the joy of
specs! We must read them comprehensively and carefully to fully understand
how all their parts interact. (Better that we had a customer to interact with,
someone who could clarify what was intended.) Right now it seems like rule
#4 contradicts what we’ve already coded.

Imagine that the rules are being fed to us one by one. “Get the first part of
rule #1 working, and then I’ll give you a new rule.” TDD aligns with this latter
approach—each portion of a spec is an incremental addition to the system.
An incremental approach allows us to build the system piecemeal, in any
order, with continually verified, forward progress. There is a trade-off: we
might spend additional time incorporating a new increment than if we had
done a bit more planning. We’ll return to this concern throughout the book.
For now, let’s see what happens when we avoid worrying about it.

We have two jobs: write a new test that describes the behavior, and change
our existing test to ensure it meets the spec. Here’s our new test:

c2/9/SoundexTest.cpp
TEST(SoundexEncoding, PadsWithZerosToEnsureThreeDigits) {

Soundex soundex;

auto encoded = soundex.encode("I");

ASSERT_THAT(encoded, Eq("I000"));
}

(One reviewer asks, “Why didn’t we read the Soundex rules more carefully
and write this first?” Good question. Indeed, we weren’t careful. A strength
of TDD is its ability to let you move forward in the face of incomplete informa-
tion and in its ability to let you correct earlier choices as new information
arises.)

Each test we add is independent. We don’t use the outcome of one test as a
precondition for running another. Each test must set up its own context. Our
new test creates its own Soundex instance.

A failing test run shows that encode() returns the string "I" instead of "I000".
Getting it to pass is straightforward.

• 16

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/lotdd/code/c2/9/SoundexTest.cpp
http://pragprog.com/titles/lotdd
http://forums.pragprog.com/forums/lotdd

c2/9/SoundexTest.cpp
std::string encode(const std::string& word) const {

return word + "000";➤

}

Hard-coding an answer may again ruffle feathers, but it will help us keep on
track. Per our tests so far, the Soundex class requires no additional behavior.
Also, by building the smallest possible increment, we’re forced to write addi-
tional tests in order to add more behavior to the system.

Our new test passes, but the first test we wrote now fails. The behavior it
describes, by example, does not match the specification we derived from
Wikipedia.

When done test-driving, you’ll know that the tests correctly describe how your
system works, as long as they pass. They provide examples that can read
easier than specs, if crafted well. We’ll continue to focus on making the tests
readable in our exercises (and I might even casually refer to them as specs).

c2/9/SoundexTest.cpp
TEST(SoundexEncoding, RetainsSoleLetterOfOneLetterWord) {

Soundex soundex;

auto encoded = soundex.encode("A");

ASSERT_THAT(encoded, Eq("A000"));➤

}

That wasn’t too tough!

We now have two tests that perform the same steps, though the data differs
slightly. That’s OK; each test now discretely documents one piece of behavior.
We not only want to make sure the system works as expected, we want
everyone to understand its complete set of intended behaviors.

It’s time for refactoring. The statement in encode() isn’t as clear about what’s
going on as it could be. We decide to extract it to its own method with an
intention-revealing name.

c2/10/SoundexTest.cpp
public:

std::string encode(const std::string& word) const {
return zeroPad(word);➤

}

private:
std::string zeroPad(const std::string& word) const {➤

return word + "000";➤

}➤

• Click HERE to purchase this book now. discuss

Incrementalism • 17

http://media.pragprog.com/titles/lotdd/code/c2/9/SoundexTest.cpp
http://media.pragprog.com/titles/lotdd/code/c2/9/SoundexTest.cpp
http://media.pragprog.com/titles/lotdd/code/c2/10/SoundexTest.cpp
http://pragprog.com/titles/lotdd
http://forums.pragprog.com/forums/lotdd

